Copyright © 2002, 2003, 2004, 2005, 2006, 2007 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato
This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
(TBA)
Table of Contents
List of Figures
List of Tables
List of Examples
A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people actually asked, but of the questions the FAQ's author wished people had asked. Perhaps you've seen the type before:
Q: How can I use Glorbosoft XYZ to maximize team productivity?
A: Many of our customers want to know how they can maximize productivity through our patented office groupware innovations. The answer is simple: first, click on the “
File
” menu, scroll down to “Increase Productivity
”, then…
The problem with such FAQs is that they are not, in a literal sense, FAQs at all. No one ever called the tech support line and asked, “How can we maximize productivity?”. Rather, people asked highly specific questions, like, “How can we change the calendaring system to send reminders two days in advance instead of one?” and so on. But it's a lot easier to make up imaginary Frequently Asked Questions than it is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into a coherent, searchable whole that reflects the collective experience of users in the wild. It calls for the patient, observant attitude of a field naturalist. No grand hypothesizing, no visionary pronouncements here—open eyes and accurate note-taking are what's needed most.
What I love about this book is that it grew out of just such a process, and shows it on every page. It is the direct result of the authors' encounters with users. It began with Ben Collins-Sussman's observation that people were asking the same basic questions over and over on the Subversion mailing lists: What are the standard workflows to use with Subversion? Do branches and tags work the same way as in other version control systems? How can I find out who made a particular change?
Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer of 2002 to write The Subversion Handbook, a sixty page manual that covered all the basics of using Subversion. The manual made no pretense of being complete, but it was distributed with Subversion and got users over that initial hump in the learning curve. When O'Reilly and Associates decided to publish a full-length Subversion book, the path of least resistance was obvious: just expand the Subversion handbook.
The three co-authors of the new book were thus presented with an unusual opportunity. Officially, their task was to write a book top-down, starting from a table of contents and an initial draft. But they also had access to a steady stream—indeed, an uncontrollable geyser—of bottom-up source material. Subversion was already in the hands of thousands of early adopters, and those users were giving tons of feedback, not only about Subversion, but about its existing documentation.
During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists and chat rooms incessantly, carefully noting the problems users were having in real-life situations. Monitoring such feedback was part of their job descriptions at CollabNet anyway, and it gave them a huge advantage when they set out to document Subversion. The book they produced is grounded firmly in the bedrock of experience, not in the shifting sands of wishful thinking; it combines the best aspects of user manual and FAQ sheet. This duality might not be noticeable on a first reading. Taken in order, front to back, the book is simply a straightforward description of a piece of software. There's the overview, the obligatory guided tour, the chapter on administrative configuration, some advanced topics, and of course a command reference and troubleshooting guide. Only when you come back to it later, seeking the solution to some specific problem, does its authenticity shine out: the telling details that can only result from encounters with the unexpected, the examples honed from genuine use cases, and most of all the sensitivity to the user's needs and the user's point of view.
Of course, no one can promise that this book will answer
every question you have about Subversion. Sometimes, the
precision with which it anticipates your questions will seem
eerily telepathic; yet occasionally, you will stumble into a
hole in the community's knowledge, and come away empty-handed.
When this happens, the best thing you can do is email
<users@subversion.tigris.org>
and present your
problem. The authors are still there, still watching, and they
include not just the three listed on the cover, but many others
who contributed corrections and original material. From the
community's point of view, solving your problem is merely a
pleasant side effect of a much larger project—namely,
slowly adjusting this book, and ultimately Subversion itself, to
more closely match the way people actually use it. They are
eager to hear from you not merely because they can help you, but
because you can help them. With Subversion as with all active
free software projects, you are not
alone.
Let this book be your first companion.
Table of Contents
“It is important not to let the perfect become the enemy of the good, even when you can agree on what perfect is. Doubly so when you can't. As unpleasant as it is to be trapped by past mistakes, you can't make any progress by being afraid of your own shadow during design.” | ||
--Greg Hudson |
In the world of open-source software, the Concurrent Versions System (CVS) was the tool of choice for version control for many years. And rightly so. CVS was open-source software itself, and its non-restrictive modus operandi and support for networked operation allowed dozens of geographically dispersed programmers to share their work. It fit the collaborative nature of the open-source world very well. CVS and its semi-chaotic development model have since become cornerstones of open-source culture.
But CVS was not without its flaws, and simply fixing those flaws promised to be an enormous effort. Enter Subversion. Designed to be a successor to CVS, Subversion's originators set out to win the hearts of CVS users in two ways—by creating an open-source system with a design (and “look and feel”) similar to CVS, and by attempting to avoid most of CVS's noticeable flaws. While the result isn't necessarily the next great evolution in version control design, Subversion is very powerful, very usable, and very flexible. And for the most part, almost all newly-started open-source projects now choose Subversion instead of CVS.
This book is written to document the 1.4 series of the Subversion version control system. We have made every attempt to be thorough in our coverage. However, Subversion has a thriving and energetic development community, so there are already a number of features and improvements planned for future versions of Subversion that may change some of the commands and specific notes in this book.
This book is written for computer-literate folk who want to use Subversion to manage their data. While Subversion runs on a number of different operating systems, its primary user interface is command-line based. That command-line tool (svn), and some auxiliary programs, are the focus of this book.
For consistency, the examples in this book assume the reader
is using a Unix-like operating system and is relatively comfortable
with Unix and command-line interfaces. That said, the
svn program also runs on non-Unix platforms
like Microsoft Windows. With a few minor exceptions, such as
the use of backward slashes (\
) instead of
forward slashes (/
) for path separators, the
input to and output from this tool when run on Windows are
identical to its Unix counterpart.
Most readers are probably programmers or system administrators who need to track changes to source code. This is the most common use for Subversion, and therefore it is the scenario underlying all of the book's examples. But Subversion can be used to manage changes to any sort of information—images, music, databases, documentation, and so on. To Subversion, all data is just data.
While this book is written with the assumption that the reader has never used a version control system, we've also tried to make it easy for users of CVS (and other systems) to make a painless leap into Subversion. Special sidebars may mention other version control systems from time to time, and a special appendix summarizes many of the differences between CVS and Subversion.
Note also that the source code examples used throughout the book are only examples. While they will compile with the proper compiler incantations, they are intended to illustrate a particular scenario, not necessarily serve as examples of good programming style or practices.
Technical books always face a certain dilemma: whether to cater to top-down or bottom-up learners. A top-down learner prefers to read or skim documentation, getting a large overview of how the system works; only then does she actually start using the software. A bottom-learner is a “learn by doing” person, someone who just wants to dive into the software and figure it out as she goes, referring to book sections when necessary. Most books tend to be written for one type of person or the other, and this book is undoubtedly biased towards top-down learners. (And if you're actually reading this section, you're probably already a top-down learner yourself!) However, if you're a bottom-up person, don't despair. While the book may be laid out as a broad survey of Subversion topics, the contents of each section tends to be heavy with specific examples that you can try-by-doing. For the impatient folks who just want to get going, you can jump right to Appendix A, Subversion Quick-Start Guide.
Regardless of your learning style, this book aims to be useful to people of widely different backgrounds—from people with no previous experience in version control to experienced system administrators. Depending on your own background, certain chapters may be more or less important to you. The following can be considered a “recommended reading list” for various types of readers:
The assumption here is that you've probably used version control before before, and are dying to get a Subversion server up and running ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration will show you how to create your first repository and make it available over the network. After that's done, Chapter 2, Basic Usage and Appendix B, Subversion for CVS Users are the fastest routes to learning the Subversion client.
Your administrator has probably set up Subversion already, and you need to learn how to use the client. If you've never used a version control system, then Chapter 1, Fundamental Concepts is a vital introduction to the ideas behind version control. Chapter 2, Basic Usage is a guided tour of the Subversion client.
Whether you're a user or administrator, eventually your project will grow larger. You're going to want to learn how to do more advanced things with Subversion, such as how to use branches and perform merges (Chapter 4, Branching and Merging), how to use Subversion's property support (Chapter 3, Advanced Topics), how to configure runtime options (Chapter 7, Customizing Your Subversion Experience), and other things. These chapters aren't critical at first, but be sure to read them once you're comfortable with the basics.
Presumably, you're already familiar with Subversion, and now want to either extend it or build new software on top of its many APIs. Chapter 8, Embedding Subversion is just for you.
The book ends with reference material—Chapter 9, Subversion Complete Reference is a reference guide for all Subversion commands, and the appendices cover a number of useful topics. These are the chapters you're mostly likely to come back to after you've finished the book.
This section covers the various conventions used in this book.
Used for commands, command output, and options
Constant width italic
Used for replaceable items in code and text
Italic
Used for file and directory names
The chapters that follow and their contents are listed here:
Covers the history of Subversion as well as its features, architecture, and components.
Explains the basics of version control and different versioning models, along with Subversion's repository, working copies, and revisions.
Walks you through a day in the life of a Subversion user. It demonstrates how to use a Subversion client to obtain, modify, and commit data.
Covers more complex features that regular users will eventually come into contact with, such as versioned metadata, file locking, and peg revisions.
Discusses branches, merges, and tagging, including best practices for branching and merging, common use cases, how to undo changes, and how to easily swing from one branch to the next.
Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and the tools you can use to do all of this.
Explains how to configure your Subversion server and
different ways to access your repository:
HTTP
, the svn
protocol, and local disk access. It also covers the details
of authentication, authorization and anonymous
access.
Explores the Subversion client configuration files, the handling of internationalized text, and how to make external tools cooperate with Subversion.
Describes the internals of Subversion, the Subversion filesystem, and the working copy administrative areas from a programmer's point of view. Demonstrates how to use the public APIs to write a program that uses Subversion, and most importantly, how to contribute to the development of Subversion.
Explains in great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the whole family!
For the impatient, a whirlwind explanation of how to install Subversion and start using it immediately. You have been warned.
Covers the similarities and differences between Subversion and CVS, with numerous suggestions on how to break all the bad habits you picked up from years of using CVS. Included are descriptions of Subversion revision numbers, versioned directories, offline operations, update vs. status, branches, tags, metadata, conflict resolution, and authentication.
Describes the details of WebDAV and DeltaV, and how you can configure your Subversion repository to be mounted read/write as a DAV share.
Discusses tools that support or use Subversion, including alternative client programs, repository browser tools, and so on.
This book started out as bits of documentation written by Subversion project developers, which were then coalesced into a single work and rewritten. As such, it has always been under a free license. (See Appendix E, Copyright.) In fact, the book was written in the public eye, originally as a part of Subversion project itself. This means two things:
You will always find the latest version of this book in the book's own Subversion repository.
You can make changes to this book and redistribute it however you wish—it's under a free license. Your only obligation is to maintain proper attribution to the original authors. Of course, rather than distribute your own private version of this book, we'd much rather you send feedback and patches to the Subversion developer community.
The online home of this book's development and most of the
volunteer-driven translation efforts around it is
http://svnbook.red-bean.com. There, you can find
links to the latest releases and tagged versions of the book in
various formats, as well as instructions for accessing the
book's Subversion repository (where lives its DocBook XML source
code). Feedback is welcome—encouraged, even. Please
submit all comments, complaints, and patches against the book
sources to <svnbook-dev@red-bean.com>
.
This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors would like to thank Brian Behlendorf and CollabNet for the vision to fund such a risky and ambitious new Open Source project; Jim Blandy for the original Subversion name and design—we love you, Jim; Karl Fogel for being such a good friend and a great community leader, in that order.[1]
Thanks to O'Reilly and our editors, Linda Mui and Tatiana Diaz for their patience and support.
Finally, we thank the countless people who contributed to this book with informal reviews, suggestions, and fixes: While this is undoubtedly not a complete list, this book would be incomplete and incorrect without the help of: David Anderson, Jani Averbach, Ryan Barrett, Francois Beausoleil, Jennifer Bevan, Matt Blais, Zack Brown, Martin Buchholz, Brane Cibej, John R. Daily, Peter Davis, Olivier Davy, Robert P. J. Day, Mo DeJong, Brian Denny, Joe Drew, Nick Duffek, Ben Elliston, Justin Erenkrantz, Shlomi Fish, Julian Foad, Chris Foote, Martin Furter, Dave Gilbert, Eric Gillespie, David Glasser, Matthew Gregan, Art Haas, Eric Hanchrow, Greg Hudson, Alexis Huxley, Jens B. Jorgensen, Tez Kamihira, David Kimdon, Mark Benedetto King, Andreas J. Koenig, Nuutti Kotivuori, Matt Kraai, Scott Lamb, Vincent Lefevre, Morten Ludvigsen, Paul Lussier, Bruce A. Mah, Philip Martin, Feliciano Matias, Patrick Mayweg, Gareth McCaughan, Jon Middleton, Tim Moloney, Christopher Ness, Mats Nilsson, Joe Orton, Amy Lyn Pilato, Kevin Pilch-Bisson, Dmitriy Popkov, Michael Price, Mark Proctor, Steffen Prohaska, Daniel Rall, Jack Repenning, Tobias Ringstrom, Garrett Rooney, Joel Rosdahl, Christian Sauer, Larry Shatzer, Russell Steicke, Sander Striker, Erik Sjoelund, Johan Sundstroem, John Szakmeister, Mason Thomas, Eric Wadsworth, Colin Watson, Alex Waugh, Chad Whitacre, Josef Wolf, Blair Zajac, and the entire Subversion community.
Thanks to my wife Frances, who, for many months, got to hear, “But honey, I'm still working on the book”, rather than the usual, “But honey, I'm still doing email.” I don't know where she gets all that patience! She's my perfect counterbalance.
Thanks to my extended family and friends for their sincere encouragement, despite having no actual interest in the subject. (You know, the ones who say, “Ooh, you wrote a book?”, and then when you tell them it's a computer book, sort of glaze over.)
Thanks to all my close friends, who make me a rich, rich man. Don't look at me that way—you know who you are.
Thanks to my parents for the perfect low-level formatting, and being unbelievable role models. Thanks to my son for the opportunity to pass that on.
Huge thanks to my wife Marie for being incredibly understanding, supportive, and most of all, patient. Thank you to my brother Eric who first introduced me to UNIX programming way back when. Thanks to my Mom and Grandmother for all their support, not to mention enduring a Christmas holiday where I came home and promptly buried my head in my laptop to work on the book.
To Mike and Ben: It was a pleasure working with you on the book. Heck, it's a pleasure working with you at work!
To everyone in the Subversion community and the Apache Software Foundation, thanks for having me. Not a day goes by where I don't learn something from at least one of you.
Lastly, thanks to my Grandfather who always told me that “freedom equals responsibility.” I couldn't agree more.
Special thanks to Amy, my best friend and wife of nine incredible years, for her love and patient support, for putting up with the late nights, and for graciously enduring the version control processes I've imposed on her. Don't worry, Sweetheart—you'll be a TortoiseSVN wizard in no time!
Gavin, there probably aren't many words in this book that you can successfully “sound out” at this stage, but when you've finally got a handle on the written form of this crazy language we speak, I hope you're as proud of your Daddy as he is of you.
Aidan, Daddy luffoo et ope Aiduh yike contootoo as much as Aiduh yike batetball, base-ball, et bootball. [2]
Mom and Dad, thanks for your constant support and enthusiasm. Mom- and Dad-in-law, thanks for all of the same plus your fabulous daughter.
Hats off to Shep Kendall, through whom the world of
computers was first opened to me; Ben Collins-Sussman, my
tour-guide through the open-source world; Karl Fogel—you
are my .emacs
; Greg
Stein, for oozing practical programming know-how; Brian
Fitzpatrick—for sharing this writing experience with me.
To the many folks from whom I am constantly picking up new
knowledge—keep dropping it!
Finally, to the One who perfectly demonstrates creative excellence—thank You.
Subversion is a free/open-source version control system. That is, Subversion manages files and directories, and the changes made to them, over time. This allows you to recover older versions of your data, or examine the history of how your data changed. In this regard, many people think of a version control system as a sort of “time machine”.
Subversion can operate across networks, which allows it to be used by people on different computers. At some level, the ability for various people to modify and manage the same set of data from their respective locations fosters collaboration. Progress can occur more quickly without a single conduit through which all modifications must occur. And because the work is versioned, you need not fear that quality is the trade-off for losing that conduit—if some incorrect change is made to the data, just undo that change.
Some version control systems are also software configuration management (SCM) systems. These systems are specifically tailored to manage trees of source code, and have many features that are specific to software development—such as natively understanding programming languages, or supplying tools for building software. Subversion, however, is not one of these systems. It is a general system that can be used to manage any collection of files. For you, those files might be source code—for others, anything from grocery shopping lists to digital video mixdowns and beyond.
In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a replacement for CVS. CollabNet offers a collaboration software suite called CollabNet Enterprise Edition (CEE) of which one component is version control. Although CEE used CVS as its initial version control system, CVS's limitations were obvious from the beginning, and CollabNet knew it would eventually have to find something better. Unfortunately, CVS had become the de facto standard in the open source world largely because there wasn't anything better, at least not under a free license. So CollabNet determined to write a new version control system from scratch, retaining the basic ideas of CVS, but without the bugs and misfeatures.
In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS (Coriolis, 1999), and asked if he'd like to work on this new project. Coincidentally, at the time Karl was already discussing a design for a new version control system with his friend Jim Blandy. In 1995, the two had started Cyclic Software, a company providing CVS support contracts, and although they later sold the business, they still used CVS every day at their jobs. Their frustration with CVS had led Jim to think carefully about better ways to manage versioned data, and he'd already come up with not only the name “Subversion”, but also with the basic design of the Subversion data store. When CollabNet called, Karl immediately agreed to work on the project, and Jim got his employer, Red Hat Software, to essentially donate him to the project for an indefinite period of time. CollabNet hired Karl and Ben Collins-Sussman, and detailed design work began in May. With the help of some well-placed prods from Brian Behlendorf and Jason Robbins of CollabNet, and Greg Stein (at the time an independent developer active in the WebDAV/DeltaV specification process), Subversion quickly attracted a community of active developers. It turned out that many people had had the same frustrating experiences with CVS, and welcomed the chance to finally do something about it.
The original design team settled on some simple goals. They didn't want to break new ground in version control methodology, they just wanted to fix CVS. They decided that Subversion would match CVS's features, and preserve the same development model, but not duplicate CVS's most obvious flaws. And although it did not need to be a drop-in replacement for CVS, it should be similar enough that any CVS user could make the switch with little effort.
After fourteen months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Subversion developers stopped using CVS to manage Subversion's own source code, and started using Subversion instead.
While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a few full-time Subversion developers), Subversion is run like most open-source projects, governed by a loose, transparent set of rules that encourage meritocracy. CollabNet's copyright license is fully compliant with the Debian Free Software Guidelines. In other words, anyone is free to download, modify, and redistribute Subversion as he pleases; no permission from CollabNet or anyone else is required.
When discussing the features that Subversion brings to the version control table, it is often helpful to speak of them in terms of how they improve upon CVS's design. If you're not familiar with CVS, you may not understand all of these features. And if you're not familiar with version control at all, your eyes may glaze over unless you first read Chapter 1, Fundamental Concepts, in which we provide a gentle introduction to version control.
Subversion provides:
CVS only tracks the history of individual files, but Subversion implements a “virtual” versioned filesystem that tracks changes to whole directory trees over time. Files and directories are versioned.
Since CVS is limited to file versioning, operations such as copies and renames—which might happen to files, but which are really changes to the contents of some containing directory—aren't supported in CVS. Additionally, in CVS you cannot replace a versioned file with some new thing of the same name without the new item inheriting the history of the old—perhaps completely unrelated—file. With Subversion, you can add, delete, copy, and rename both files and directories. And every newly added file begins with a fresh, clean history all its own.
A collection of modifications either goes into the repository completely, or not at all. This allows developers to construct and commit changes as logical chunks, and prevents problems that can occur when only a portion of a set of changes is successfully sent to the repository.
Each file and directory has a set of properties—keys and their values—associated with it. You can create and store any arbitrary key/value pairs you wish. Properties are versioned over time, just like file contents.
Subversion has an abstracted notion of repository access, making it easy for people to implement new network mechanisms. Subversion can plug into the Apache HTTP Server as an extension module. This gives Subversion a big advantage in stability and interoperability, and instant access to existing features provided by that server—authentication, authorization, wire compression, and so on. A more lightweight, standalone Subversion server process is also available. This server speaks a custom protocol which can be easily tunneled over SSH.
Subversion expresses file differences using a binary differencing algorithm, which works identically on both text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally compressed in the repository, and differences are transmitted in both directions across the network.
The cost of branching and tagging need not be proportional to the project size. Subversion creates branches and tags by simply copying the project, using a mechanism similar to a hard-link. Thus these operations take only a very small, constant amount of time.
Subversion has no historical baggage; it is implemented as a collection of shared C libraries with well-defined APIs. This makes Subversion extremely maintainable and usable by other applications and languages.
Figure 1, “Subversion's Architecture” illustrates a “mile-high” view of Subversion's design.
On one end is a Subversion repository that holds all of your versioned data. On the other end is your Subversion client program, which manages local reflections of portions of that versioned data (called “working copies”). Between these extremes are multiple routes through various Repository Access (RA) layers. Some of these routes go across computer networks and through network servers which then access the repository. Others bypass the network altogether and access the repository directly.
Subversion, once installed, has a number of different pieces. The following is a quick overview of what you get. Don't be alarmed if the brief descriptions leave you scratching your head—there are plenty more pages in this book devoted to alleviating that confusion.
The command-line client program.
A program for reporting the state (in terms of revisions of the items present) of a working copy.
A tool for directly inspecting a Subversion repository.
A tool for creating, tweaking or repairing a Subversion repository.
A program for filtering Subversion repository dump streams.
A plug-in module for the Apache HTTP Server, used to make your repository available to others over a network.
A custom standalone server program, runnable as a daemon process or invokable by SSH; another way to make your repository available to others over a network.
A program for incrementally mirroring one repository to another over a network.
Assuming you have Subversion installed correctly, you should be ready to start. The next two chapters will walk you through the use of svn, Subversion's command-line client program.
Table of Contents
This chapter is a short, casual introduction to Subversion. If you're new to version control, this chapter is definitely for you. We begin with a discussion of general version control concepts, work our way into the specific ideas behind Subversion, and show some simple examples of Subversion in use.
Even though the examples in this chapter show people sharing collections of program source code, keep in mind that Subversion can manage any sort of file collection—it's not limited to helping computer programmers.
Subversion is a centralized system for sharing information. At its core is a repository, which is a central store of data. The repository stores information in the form of a filesystem tree—a typical hierarchy of files and directories. Any number of clients connect to the repository, and then read or write to these files. By writing data, a client makes the information available to others; by reading data, the client receives information from others. Figure 1.1, “A typical client/server system” illustrates this.
So why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository is a kind of file server, but it's not your usual breed. What makes the Subversion repository special is that it remembers every change ever written to it: every change to every file, and even changes to the directory tree itself, such as the addition, deletion, and rearrangement of files and directories.
When a client reads data from the repository, it normally sees only the latest version of the filesystem tree. But the client also has the ability to view previous states of the filesystem. For example, a client can ask historical questions like, “What did this directory contain last Wednesday?” or “Who was the last person to change this file, and what changes did he make?” These are the sorts of questions that are at the heart of any version control system: systems that are designed to track changes to data over time.
The core mission of a version control system is to enable collaborative editing and sharing of data. But different systems use different strategies to achieve this. It's important to understand these different strategies for a couple of reasons. First, it will help you compare and contrast existing version control systems, in case you encounter other systems similar to Subversion. Beyond that, it will also help you make more effective use of Subversion, since Subversion itself supports a couple of different ways of working.
All version control systems have to solve the same fundamental problem: how will the system allow users to share information, but prevent them from accidentally stepping on each other's feet? It's all too easy for users to accidentally overwrite each other's changes in the repository.
Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two co-workers, Harry and Sally. They each decide to edit the same repository file at the same time. If Harry saves his changes to the repository first, then it's possible that (a few moments later) Sally could accidentally overwrite them with her own new version of the file. While Harry's version of the file won't be lost forever (because the system remembers every change), any changes Harry made won't be present in Sally's newer version of the file, because she never saw Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from the latest version of the file—and probably by accident. This is definitely a situation we want to avoid!
Many version control systems use a lock-modify-unlock model to address the problem of many authors clobbering each other's work. In this model, the repository allows only one person to change a file at a time. This exclusivity policy is managed using locks. Harry must “lock” a file before he can begin making changes to it. If Harry has locked a file, then Sally cannot also lock it, and therefore cannot make any changes to that file. All she can do is read the file, and wait for Harry to finish his changes and release his lock. After Harry unlocks the file, Sally can take her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock solution” demonstrates this simple solution.
The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a roadblock for users:
Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about it. Meanwhile, because Sally is still waiting to edit the file, her hands are tied. And then Harry goes on vacation. Now Sally has to get an administrator to release Harry's lock. The situation ends up causing a lot of unnecessary delay and wasted time.
Locking may cause unnecessary serialization. What if Harry is editing the beginning of a text file, and Sally simply wants to edit the end of the same file? These changes don't overlap at all. They could easily edit the file simultaneously, and no great harm would come, assuming the changes were properly merged together. There's no need for them to take turns in this situation.
Locking may create a false sense of security. Suppose Harry locks and edits file A, while Sally simultaneously locks and edits file B. But what if A and B depend on one another, and the changes made to each are semantically incompatible? Suddenly A and B don't work together anymore. The locking system was powerless to prevent the problem—yet it somehow provided a false sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a safe, insulated task, and thus not bother discussing their incompatible changes early on. Locking often becomes a substitute for real communication.
Subversion, CVS, and many other version control systems use a copy-modify-merge model as an alternative to locking. In this model, each user's client contacts the project repository and creates a personal working copy—a local reflection of the repository's files and directories. Users then work simultaneously and independently, modifying their private copies. Finally, the private copies are merged together into a new, final version. The version control system often assists with the merging, but ultimately a human being is responsible for making it happen correctly.
Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the repository. They work concurrently, and make changes to the same file A within their copies. Sally saves her changes to the repository first. When Harry attempts to save his changes later, the repository informs him that his file A is out-of-date. In other words, that file A in the repository has somehow changed since he last copied it. So Harry asks his client to merge any new changes from the repository into his working copy of file A. Chances are that Sally's changes don't overlap with his own; so once he has both sets of changes integrated, he saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution” and Figure 1.5, “The copy-modify-merge solution (continued)” show this process.
But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and it's usually not much of a problem. When Harry asks his client to merge the latest repository changes into his working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll be able to see both sets of conflicting changes, and manually choose between them. Note that software can't automatically resolve conflicts; only humans are capable of understanding and making the necessary intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a discussion with Sally—he can safely save the merged file back to the repository.
The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can work in parallel, never waiting for one another. When they work on the same files, it turns out that most of their concurrent changes don't overlap at all; conflicts are infrequent. And the amount of time it takes to resolve conflicts is usually far less than the time lost by a locking system.
In the end, it all comes down to one critical factor: user communication. When users communicate poorly, both syntactic and semantic conflicts increase. No system can force users to communicate perfectly, and no system can detect semantic conflicts. So there's no point in being lulled into a false sense of security that a locking system will somehow prevent conflicts; in practice, locking seems to inhibit productivity more than anything else.
It's time to move from the abstract to the concrete. In this section, we'll show real examples of Subversion being used.
Throughout this book, Subversion uses URLs to identify versioned files and directories in Subversion repositories. For the most part, these URLs use the standard syntax, allowing for server names and port numbers to be specified as part of the URL:
$ svn checkout http://svn.example.com:9834/repos …
But there are some nuances in Subversion's handling of URLs
that are notable. For example, URLs containing the
file://
access method (used for local
repositories) must, in accordance with convention, have either a
server name of localhost
or no server name at
all:
$ svn checkout file:///path/to/repos … $ svn checkout file://localhost/path/to/repos …
Also, users of the file://
scheme on
Windows platforms will need to use an unofficially
“standard” syntax for accessing repositories
that are on the same machine, but on a different drive than
the client's current working drive. Either of the two
following URL path syntaxes will work where
X
is the drive on which the repository
resides:
C:\> svn checkout file:///X:/path/to/repos … C:\> svn checkout "file:///X|/path/to/repos" …
In the second syntax, you need to quote the URL so that the vertical bar character is not interpreted as a pipe. Also, note that a URL uses forward slashes even though the native (non-URL) form of a path on Windows uses backslashes.
Subversion's file://
URLs cannot be
used in a regular web browser the way typical
file://
URLs can. When you attempt to view
a file://
URL in a regular web browser, it
reads and displays the contents of the file at that location
by examining the filesystem directly. However, Subversion's
resources exist in a virtual filesystem (see the section called “Repository Layer”), and your browser
will not understand how to interact with that
filesystem.
Finally, it should be noted that the Subversion client will automatically encode URLs as necessary, just like a web browser does. For example, if a URL contains a space or upper-ASCII character:
$ svn checkout "http://host/path with space/project/españa"
…then Subversion will escape the unsafe characters and behave as if you had typed:
$ svn checkout http://host/path%20with%20space/project/espa%C3%B1a
If the URL contains spaces, be sure to place it within quote marks, so that your shell treats the whole thing as a single argument to the svn program.
You've already read about working copies; now we'll demonstrate how the Subversion client creates and uses them.
A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files. You can edit these files however you wish, and if they're source code files, you can compile your program from them in the usual way. Your working copy is your own private work area: Subversion will never incorporate other people's changes, nor make your own changes available to others, until you explicitly tell it to do so. You can even have multiple working copies of the same project.
After you've made some changes to the files in your working copy and verified that they work properly, Subversion provides you with commands to “publish” your changes to the other people working with you on your project (by writing to the repository). If other people publish their own changes, Subversion provides you with commands to merge those changes into your working directory (by reading from the repository).
A working copy also contains some extra files, created and
maintained by Subversion, to help it carry out these commands.
In particular, each directory in your working copy contains a
subdirectory named .svn
, also known as
the working copy administrative
directory. The files in each administrative
directory help Subversion recognize which files contain
unpublished changes, and which files are out-of-date with
respect to others' work.
A typical Subversion repository often holds the files (or source code) for several projects; usually, each project is a subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy will usually correspond to a particular subtree of the repository.
For example, suppose you have a repository that contains
two software projects, paint
and
calc
. Each project lives in its own
top-level subdirectory, as shown in Figure 1.6, “The repository's filesystem”.
To get a working copy, you must check
out some subtree of the repository. (The term
“check out” may sound like it has something to do
with locking or reserving resources, but it doesn't; it simply
creates a private copy of the project for you.) For example,
if you check out /calc
, you will get a
working copy like this:
$ svn checkout http://svn.example.com/repos/calc A calc/Makefile A calc/integer.c A calc/button.c Checked out revision 56. $ ls -A calc Makefile integer.c button.c .svn/
The list of letter A's in the left margin indicates that
Subversion is adding a number of items to your working copy.
You now have a personal copy of the
repository's /calc
directory, with one
additional entry—.svn
—which
holds the extra information needed by Subversion, as mentioned
earlier.
Suppose you make changes to button.c
.
Since the .svn
directory remembers the
file's original modification date and contents, Subversion can
tell that you've changed the file. However, Subversion does
not make your changes public until you explicitly tell it to.
The act of publishing your changes is more commonly known as
committing (or checking
in) changes to the repository.
To publish your changes to others, you can use Subversion's commit command.
$ svn commit button.c -m "Fixed a typo in button.c." Sending button.c Transmitting file data . Committed revision 57.
Now your changes to button.c
have
been committed to the repository, with a note describing your
change (namely, that you fixed a typo). If another user
checks out a working copy of /calc
, they
will see your changes in the latest version of the
file.
Suppose you have a collaborator, Sally, who checked out a
working copy of /calc
at the same time
you did. When you commit your change to
button.c
, Sally's working copy is left
unchanged; Subversion only modifies working copies at the
user's request.
To bring her project up to date, Sally can ask Subversion to update her working copy, by using the Subversion update command. This will incorporate your changes into her working copy, as well as any others that have been committed since she checked it out.
$ pwd /home/sally/calc $ ls -A .svn/ Makefile integer.c button.c $ svn update U button.c Updated to revision 57.
The output from the svn update command
indicates that Subversion updated the contents of
button.c
. Note that Sally didn't need to
specify which files to update; Subversion uses the information
in the .svn
directory, and further
information in the repository, to decide which files need to
be brought up to date.
An svn commit operation publishes changes to any number of files and directories as a single atomic transaction. In your working copy, you can change files' contents; create, delete, rename and copy files and directories; then commit a complete set of changes as an atomic transaction.
By “atomic transaction”, we mean simply this: either all of the changes happen in the repository, or none of them happen. Subversion tries to retain this atomicity in the face of program crashes, system crashes, network problems, and other users' actions.
Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision. Each revision is assigned a unique natural number, one greater than the number of the previous revision. The initial revision of a freshly created repository is numbered zero, and consists of nothing but an empty root directory.
Figure 1.7, “The repository” illustrates a nice way to visualize the repository. Imagine an array of revision numbers, starting at 0, stretching from left to right. Each revision number has a filesystem tree hanging below it, and each tree is a “snapshot” of the way the repository looked after a commit.
It's important to note that working copies do not always correspond to any single revision in the repository; they may contain files from several different revisions. For example, suppose you check out a working copy from a repository whose most recent revision is 4:
calc/Makefile:4 integer.c:4 button.c:4
At the moment, this working directory corresponds exactly
to revision 4 in the repository. However, suppose you make a
change to button.c
, and commit that
change. Assuming no other commits have taken place, your
commit will create revision 5 of the repository, and your
working copy will now look like this:
calc/Makefile:4 integer.c:4 button.c:5
Suppose that, at this point, Sally commits a change to
integer.c
, creating revision 6. If you
use svn update to bring your working copy
up to date, then it will look like this:
calc/Makefile:6 integer.c:6 button.c:6
Sally's change to integer.c
will
appear in your working copy, and your change will still be
present in button.c
. In this example,
the text of Makefile
is identical in
revisions 4, 5, and 6, but Subversion will mark your working
copy of Makefile
with revision 6 to
indicate that it is still current. So, after you do a clean
update at the top of your working copy, it will generally
correspond to exactly one revision in the repository.
For each file in a working directory, Subversion records
two essential pieces of information in the
.svn/
administrative area:
what revision your working file is based on (this is called the file's working revision), and
a timestamp recording when the local copy was last updated by the repository.
Given this information, by talking to the repository, Subversion can tell which of the following four states a working file is in:
The file is unchanged in the working directory, and no changes to that file have been committed to the repository since its working revision. An svn commit of the file will do nothing, and an svn update of the file will do nothing.
The file has been changed in the working directory, and no changes to that file have been committed to the repository since you last updated. There are local changes that have not been committed to the repository, thus an svn commit of the file will succeed in publishing your changes, and an svn update of the file will do nothing.
The file has not been changed in the working directory, but it has been changed in the repository. The file should eventually be updated, to make it current with the latest public revision. An svn commit of the file will do nothing, and an svn update of the file will fold the latest changes into your working copy.
The file has been changed both in the working directory, and in the repository. An svn commit of the file will fail with an “out-of-date” error. The file should be updated first; an svn update command will attempt to merge the public changes with the local changes. If Subversion can't complete the merge in a plausible way automatically, it leaves it to the user to resolve the conflict.
This may sound like a lot to keep track of, but the svn status command will show you the state of any item in your working copy. For more information on that command, see the section called “See an overview of your changes”.
As a general principle, Subversion tries to be as flexible as possible. One special kind of flexibility is the ability to have a working copy containing files and directories with a mix of different working revision numbers. Unfortunately, this flexibility tends to confuse a number of new users. If the earlier example showing mixed revisions perplexed you, here's a primer on both why the feature exists and how to make use of it.
One of the fundamental rules of Subversion is that a “push” action does not cause a “pull”, nor the other way around. Just because you're ready to submit new changes to the repository doesn't mean you're ready to receive changes from other people. And if you have new changes still in progress, then svn update should gracefully merge repository changes into your own, rather than forcing you to publish them.
The main side-effect of this rule is that it means a working copy has to do extra bookkeeping to track mixed revisions, and be tolerant of the mixture as well. It's made more complicated by the fact that directories themselves are versioned.
For example, suppose you have a working copy entirely at
revision 10. You edit the
file foo.html
and then perform
an svn commit, which creates revision 15
in the repository. After the commit succeeds, many new
users would expect the working copy to be entirely at
revision 15, but that's not the case! Any number of changes
might have happened in the repository between revisions 10
and 15. The client knows nothing of those changes in the
repository, since you haven't yet run svn
update, and svn commit doesn't
pull down new changes. If, on the other hand,
svn commit were to
automatically download the newest changes, then it would be
possible to set the entire working copy to revision
15—but then we'd be breaking the fundamental rule
of “push” and “pull” remaining
separate actions. Therefore the only safe thing the
Subversion client can do is mark the one
file—foo.html
—as being at
revision 15. The rest of the working copy remains at
revision 10. Only by running svn update
can the latest changes be downloaded, and the whole working
copy be marked as revision 15.
The fact is, every time you run svn commit, your working copy ends up with some mixture of revisions. The things you just committed are marked as having larger working revisions than everything else. After several commits (with no updates in-between) your working copy will contain a whole mixture of revisions. Even if you're the only person using the repository, you will still see this phenomenon. To examine your mixture of working revisions, use the svn status --verbose command (see the section called “See an overview of your changes” for more information.)
Often, new users are completely unaware that their working copy contains mixed revisions. This can be confusing, because many client commands are sensitive to the working revision of the item they're examining. For example, the svn log command is used to display the history of changes to a file or directory (see the section called “Generating a list of historical changes”). When the user invokes this command on a working copy object, they expect to see the entire history of the object. But if the object's working revision is quite old (often because svn update hasn't been run in a long time), then the history of the older version of the object is shown.
If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly backdate (or, update to a revision older than the one you already have) portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 2, Basic Usage. Perhaps you'd like to test an earlier version of a sub-module contained in a subdirectory, or perhaps you'd like to figure out when a bug first came into existence in a specific file. This is the “time machine” aspect of a version control system—the feature which allows you to move any portion of your working copy forward and backward in history.
However you make use of mixed revisions in your working copy, there are limitations to this flexibility.
First, you cannot commit the deletion of a file or directory which isn't fully up-to-date. If a newer version of the item exists in the repository, your attempt to delete will be rejected, to prevent you from accidentally destroying changes you've not yet seen.
Second, you cannot commit a metadata change to a directory unless it's fully up-to-date. You'll learn about attaching “properties” to items in Chapter 3, Advanced Topics. A directory's working revision defines a specific set of entries and properties, and thus committing a property change to an out-of-date directory may destroy properties you've not yet seen.
We've covered a number of fundamental Subversion concepts in this chapter:
We've introduced the notions of the central repository, the client working copy, and the array of repository revision trees.
We've seen some simple examples of how two collaborators can use Subversion to publish and receive changes from one another, using the “copy-modify-merge” model.
We've talked a bit about the way Subversion tracks and manages information in a working copy.
At this point, you should have a good idea of how Subversion works in the most general sense. Armed with this knowledge, you should now be ready to move into the next chapter, which is a detailed tour of Subversion's commands and features.
Table of Contents
Now we will go into the details of using Subversion. By the time you reach the end of this chapter, you will be able to perform all the tasks you need to use Subversion in a normal day's work. You'll start with getting your files into Subversion, followed by an initial checkout of your code. We'll then walk you through making changes and examining those changes. You'll also see how to bring changes made by others into your working copy, examine them, and work through any conflicts that might arise.
Note that this chapter is not meant to be an exhaustive list of all Subversion's commands—rather, it's a conversational introduction to the most common Subversion tasks you'll encounter. This chapter assumes that you've read and understood Chapter 1, Fundamental Concepts and are familiar with the general model of Subversion. For a complete reference of all commands, see Chapter 9, Subversion Complete Reference.
Before reading on, here is the most important command you'll
ever need when using Subversion: svn help.
The Subversion command-line client is self-documenting—at
any time, a quick svn help
SUBCOMMAND
will describe
the syntax, options, and behavior of the subcommand.
$ svn help import import: Commit an unversioned file or tree into the repository. usage: import [PATH] URL Recursively commit a copy of PATH to URL. If PATH is omitted '.' is assumed. Parent directories are created as necessary in the repository. If PATH is a directory, the contents of the directory are added directly under URL. Valid options: -q [--quiet] : print as little as possible -N [--non-recursive] : operate on single directory only …
There are two ways to get new files into your Subversion repository: svn import and svn add. We'll discuss svn import here and svn add later in this chapter when we review a typical day with Subversion.
The svn import command is a quick way to copy an unversioned tree of files into a repository, creating intermediate directories as necessary. svn import doesn't require a working copy, and your files are immediately committed to the repository. This is typically used when you have an existing tree of files that you want to begin tracking in your Subversion repository. For example:
$ svnadmin create /usr/local/svn/newrepos $ svn import mytree file:///usr/local/svn/newrepos/some/project \ -m "Initial import" Adding mytree/foo.c Adding mytree/bar.c Adding mytree/subdir Adding mytree/subdir/quux.h Committed revision 1.
The previous example copied the contents of directory
mytree
under the directory
some/project
in the repository:
$ svn list file:///usr/local/svn/newrepos/some/project bar.c foo.c subdir/
Note that after the import is finished, the original tree is not converted into a working copy. To start working, you still need to svn checkout a fresh working copy of the tree.
While Subversion's flexibility allows you to layout your
repository in any way that you choose, we recommend that you
create a trunk
directory to hold the
“main line” of development, a
branches
directory to contain branch
copies, and a tags
directory to contain tag
copies, for example:
$ svn list file:///usr/local/svn/repos /trunk /branches /tags
You'll learn more about tags and branches in Chapter 4, Branching and Merging. For details and how to set up multiple projects, see the section called “Repository Layout” and the section called “Planning Your Repository Organization” to read more about “project roots”.
Most of the time, you will start using a Subversion
repository by doing a checkout of your
project. Checking out a repository creates a “working
copy” of it on your local machine. This copy contains
the HEAD
(latest revision) of the Subversion
repository that you specify on the command line:
$ svn checkout http://svn.collab.net/repos/svn/trunk A trunk/Makefile.in A trunk/ac-helpers A trunk/ac-helpers/install.sh A trunk/ac-helpers/install-sh A trunk/build.conf … Checked out revision 8810.
Although the above example checks out the trunk directory, you can just as easily check out any deep subdirectory of a repository by specifying the subdirectory in the checkout URL:
$ svn checkout \ http://svn.collab.net/repos/svn/trunk/subversion/tests/cmdline/ A cmdline/revert_tests.py A cmdline/diff_tests.py A cmdline/autoprop_tests.py A cmdline/xmltests A cmdline/xmltests/svn-test.sh … Checked out revision 8810.
Since Subversion uses a “copy-modify-merge” model instead of “lock-modify-unlock” (see the section called “Versioning Models”), you can start right in making changes to the files and directories in your working copy. Your working copy is just like any other collection of files and directories on your system. You can edit and change them, move them around, you can even delete the entire working copy and forget about it.
While your working copy is “just like any other collection of files and directories on your system”, you can edit files at will, but you must tell Subversion about everything else that you do. For example, if you want to copy or move an item in a working copy, you should use svn copy or svn move instead of the copy and move commands provided by your operating system. We'll talk more about them later in this chapter.
Unless you're ready to commit the addition of a new file or directory, or changes to existing ones, there's no need to further notify the Subversion server that you've done anything.
While you can certainly check out a working copy with the URL of the repository as the only argument, you can also specify a directory after your repository URL. This places your working copy in the new directory that you name. For example:
$ svn checkout http://svn.collab.net/repos/svn/trunk subv A subv/Makefile.in A subv/ac-helpers A subv/ac-helpers/install.sh A subv/ac-helpers/install-sh A subv/build.conf … Checked out revision 8810.
That will place your working copy in a directory named
subv
instead of a directory named
trunk
as we did previously. The directory
subv
will be created if it doesn't already
exist.
When you perform a Subversion operation that requires you to authenticate, by default Subversion caches your authentication credentials on disk. This is done for convenience, so that you don't have to continually re-enter your password for future operations. If you're concerned about caching your Subversion passwords,[3] you can disable caching either permanently or on a case-by-case basis.
To disable password caching for a particular one-time
command, pass the --no-auth-cache
option on
the commandline. To permanently disable caching, you can add
the line store-passwords = no
to your local
machine's Subversion configuration file. See the section called “Client Credentials Caching” for
details.
Since Subversion caches auth credentials by default (both
username and password), it conveniently remembers who you were
acting as the last time you modified you working copy. But
sometimes that's not helpful—particularly if you're
working in a shared working copy, like a system configuration
directory or a webserver document root. In this case, just
pass the --username
option on the
commandline and Subversion will attempt to authenticate as
that user, prompting you for a password if necessary.
Subversion has numerous features, options, bells and whistles, but on a day-to-day basis, odds are that you will only use a few of them. In this section we'll run through the most common things that you might find yourself doing with Subversion in the course of a day's work.
The typical work cycle looks like this:
Update your working copy
svn update
Make changes
svn add
svn delete
svn copy
svn move
Examine your changes
svn status
svn diff
Possibly undo some changes
svn revert
Resolve Conflicts (Merge Others' Changes)
svn update
svn resolved
Commit your changes
svn commit
When working on a project with a team, you'll want to update your working copy to receive any changes made since your last update by other developers on the project. Use svn update to bring your working copy into sync with the latest revision in the repository.
$ svn update U foo.c U bar.c Updated to revision 2.
In this case, someone else checked in modifications to
both foo.c
and bar.c
since the last time you updated, and Subversion has updated
your working copy to include those changes.
When the server sends changes to your working copy via svn update, a letter code is displayed next to each item to let you know what actions Subversion performed to bring your working copy up-to-date. To find out what these letters mean, see svn update.
Now you can get to work and make changes in your working copy. It's usually most convenient to decide on a discrete change (or set of changes) to make, such as writing a new feature, fixing a bug, etc. The Subversion commands that you will use here are svn add, svn delete, svn copy, svn move, and svn mkdir. However, if you are merely editing files that are already in Subversion, you may not need to use any of these commands until you commit.
There are two kinds of changes you can make to your working copy: file changes and tree changes. You don't need to tell Subversion that you intend to change a file; just make your changes using your text editor, word processor, graphics program, or whatever tool you would normally use. Subversion automatically detects which files have been changed, and in addition handles binary files just as easily as it handles text files—and just as efficiently too. For tree changes, you can ask Subversion to “mark” files and directories for scheduled removal, addition, copying, or moving. These changes may take place immediately in your working copy, but no additions or removals will happen in the repository until you commit them.
Here is an overview of the five Subversion subcommands that you'll use most often to make tree changes.
Schedule file, directory, or symbolic link
foo
to be added to the repository.
When you next commit, foo
will
become a child of its parent directory. Note that if
foo
is a directory, everything
underneath foo
will be scheduled
for addition. If you only want to add
foo
itself, pass the
--non-recursive (-N)
option.
Schedule file, directory, or symbolic link
foo
to be deleted from the
repository. If foo
is a file or
link, it is immediately deleted from your working copy.
If foo
is a directory, it is not
deleted, but Subversion schedules it for deletion. When
you commit your changes, foo
will
be entirely removed from your working copy and the
repository.
[4]
Create a new item bar
as a
duplicate of foo
and automatically
schedule bar
for addition.
When bar
is added to the
repository on the next commit, its copy history is
recorded (as having originally come from
foo
). svn copy
does not create intermediate directories.
This command is exactly the same as running
svn copy foo bar; svn delete foo.
That is, bar
is scheduled for
addition as a copy of foo
, and
foo
is scheduled for removal.
svn move does not create intermediate
directories.
This command is exactly the same as running
mkdir blort; svn add blort. That is,
a new directory named blort
is
created and scheduled for addition.
Once you've finished making changes, you need to commit them to the repository, but before you do so, it's usually a good idea to take a look at exactly what you've changed. By examining your changes before you commit, you can make a more accurate log message. You may also discover that you've inadvertently changed a file, and this gives you a chance to revert those changes before committing. Additionally, this is a good opportunity to review and scrutinize changes before publishing them. You can see an overview of the changes you've made by using svn status, and dig into the details of those changes by using svn diff.
Subversion has been optimized to help you with this task,
and is able to do many things without communicating with the
repository. In particular, your working copy contains a
hidden cached “pristine” copy of each version
controlled file within the .svn
area.
Because of this, Subversion can quickly show you how your
working files have changed, or even allow you to undo your
changes without contacting the repository.
To get an overview of your changes, you'll use the svn status command. You'll probably use svn status more than any other Subversion command.
If you run svn status at the top of
your working copy with no arguments, it will detect all file
and tree changes you've made. Below are a few examples of
the most common status codes that svn
status can return. (Note that the text following
#
is not
actually printed by svn status.)
A stuff/loot/bloo.h # file is scheduled for addition C stuff/loot/lump.c # file has textual conflicts from an update D stuff/fish.c # file is scheduled for deletion M bar.c # the content in bar.c has local modifications
In this output format svn status prints six columns of characters, followed by several whitespace characters, followed by a file or directory name. The first column tells the status of a file or directory and/or its contents. The codes we listed are:
A item
The file, directory, or symbolic link
item
has been scheduled for
addition into the repository.
C item
The file item
is in a state
of conflict. That is, changes received from the
server during an update overlap with local changes
that you have in your working copy. You must resolve
this conflict before committing your changes to the
repository.
D item
The file, directory, or symbolic link
item
has been scheduled for
deletion from the repository.
M item
The contents of the file item
have been modified.
If you pass a specific path to svn status, you get information about that item alone:
$ svn status stuff/fish.c D stuff/fish.c
svn status also has a
--verbose (-v)
option, which will show you
the status of every item in your
working copy, even if it has not been changed:
$ svn status -v M 44 23 sally README 44 30 sally INSTALL M 44 20 harry bar.c 44 18 ira stuff 44 35 harry stuff/trout.c D 44 19 ira stuff/fish.c 44 21 sally stuff/things A 0 ? ? stuff/things/bloo.h 44 36 harry stuff/things/gloo.c
This is the “long form” output of svn status. The letters in the first column mean the same as before, but the second column shows the working-revision of the item. The third and fourth columns show the revision in which the item last changed, and who changed it.
None of the prior invocations to svn
status contact the repository—instead, they
compare the metadata in the
.svn
directory with the working copy.
Finally, there is the --show-updates (-u)
option, which contacts the repository and adds information
about things that are out-of-date:
$ svn status -u -v M * 44 23 sally README M 44 20 harry bar.c * 44 35 harry stuff/trout.c D 44 19 ira stuff/fish.c A 0 ? ? stuff/things/bloo.h Status against revision: 46
Notice the two asterisks: if you were to run
svn update at this point, you would
receive changes to README
and trout.c
. This tells you some very
useful information—you'll need to update and get the
server changes on README
before you
commit, or the repository will reject your commit for being
out-of-date. (More on this subject later.)
svn status can display much more information about the files and directories in your working copy than we've shown here—for an exhaustive description of svn status and its output, see svn status.
Another way to examine your changes is with the svn diff command. You can find out exactly how you've modified things by running svn diff with no arguments, which prints out file changes in unified diff format:
$ svn diff Index: bar.c =================================================================== --- bar.c (revision 3) +++ bar.c (working copy) @@ -1,7 +1,12 @@ +#include <sys/types.h> +#include <sys/stat.h> +#include <unistd.h> + +#include <stdio.h> int main(void) { - printf("Sixty-four slices of American Cheese...\n"); + printf("Sixty-five slices of American Cheese...\n"); return 0; } Index: README =================================================================== --- README (revision 3) +++ README (working copy) @@ -193,3 +193,4 @@ +Note to self: pick up laundry. Index: stuff/fish.c =================================================================== --- stuff/fish.c (revision 1) +++ stuff/fish.c (working copy) -Welcome to the file known as 'fish'. -Information on fish will be here soon. Index: stuff/things/bloo.h =================================================================== --- stuff/things/bloo.h (revision 8) +++ stuff/things/bloo.h (working copy) +Here is a new file to describe +things about bloo.
The svn diff command produces this
output by comparing your working files against the cached
“pristine” copies within the
.svn
area. Files scheduled for
addition are displayed as all added-text, and files
scheduled for deletion are displayed as all deleted
text.
Output is displayed in unified diff format. That is,
removed lines are prefaced with -
and
added lines are prefaced with
+
. svn diff also
prints filename and offset information useful to the
patch program, so you can generate
“patches” by redirecting the diff output to a
file:
$ svn diff > patchfile
You could, for example, email the patch file to another developer for review or testing prior to commit.
Subversion uses its internal diff engine, which produces
unified diff format, by default. If you want diff output in
a different format, specify an external diff program using
--diff-cmd
and pass any flags you'd like to
it using the --extensions (-x)
option. For
example, to see local differences in file
foo.c
in context output format while
ignoring case differences, you might run svn diff
--diff-cmd /usr/bin/diff --extensions '-i'
foo.c.
Suppose while viewing the output of svn diff you determine that all the changes you made to a particular file are mistakes. Maybe you shouldn't have changed the file at all, or perhaps it would be easier to make different changes starting from scratch.
This is a perfect opportunity to use svn revert:
$ svn revert README Reverted 'README'
Subversion reverts the file to its pre-modified state by
overwriting it with the cached “pristine” copy
from the .svn
area. But also note that
svn revert can undo
any scheduled operations—for
example, you might decide that you don't want to add a new
file after all:
$ svn status foo ? foo $ svn add foo A foo $ svn revert foo Reverted 'foo' $ svn status foo ? foo
svn revert
ITEM
has exactly the same
effect as deleting ITEM
from
your working copy and then running svn update -r
BASE ITEM
. However,
if you're reverting a file, svn revert
has one very noticeable difference—it doesn't have
to communicate with the repository to restore your
file.
Or perhaps you mistakenly removed a file from version control:
$ svn status README README $ svn delete README D README $ svn revert README Reverted 'README' $ svn status README README
We've already seen how svn status -u can predict conflicts. Suppose you run svn update and some interesting things occur:
$ svn update U INSTALL G README C bar.c Updated to revision 46.
The U
and
G
codes are no cause for
concern; those files cleanly absorbed changes from the
repository. The files marked with
U
contained no local changes
but were U
pdated with changes
from the repository. The G
stands for merG
ed, which
means that the file had local changes to begin with, but the
changes coming from the repository didn't overlap with the local
changes.
But the C
stands for
c
onflict. This means that the
changes from the server overlapped with your own, and now you
have to manually choose between them.
Whenever a conflict occurs, three things typically occur to assist you in noticing and resolving that conflict:
Subversion prints a C
during the update, and remembers that the file is in a
state of conflict.
If Subversion considers the file to be mergeable,
it places conflict
markers—special strings of text which
delimit the “sides” of the
conflict—into the file to visibly demonstrate the
overlapping areas. (Subversion uses the
svn:mime-type
property to decide if a
file is capable of contextual, line-based merging. See
the section called “File Content Type” to learn more.)
For every conflicted file, Subversion places three extra unversioned files in your working copy:
filename.mine
This is your file as it existed in your working
copy before you updated your working copy—that
is, without conflict markers. This file has only
your latest changes in it. (If Subversion considers
the file to be unmergeable, then the
.mine
file isn't created, since
it would be identical to the working file.)
filename.rOLDREV
This is the file that was the
BASE
revision before you updated
your working copy. That is, the file that you
checked out before you made your latest
edits.
filename.rNEWREV
This is the file that your Subversion client
just received from the server when you updated your
working copy. This file corresponds to the
HEAD
revision of the
repository.
Here OLDREV
is the revision number
of the file in your .svn
directory
and NEWREV
is the revision number of
the repository HEAD
.
For example, Sally makes changes to the file
sandwich.txt
in the repository. Harry has
just changed the file in his working copy and checked it in.
Sally updates her working copy before checking in and she gets
a conflict:
$ svn update C sandwich.txt Updated to revision 2. $ ls -1 sandwich.txt sandwich.txt.mine sandwich.txt.r1 sandwich.txt.r2
At this point, Subversion will not
allow you to commit the file sandwich.txt
until the three temporary files are removed.
$ svn commit -m "Add a few more things" svn: Commit failed (details follow): svn: Aborting commit: '/home/sally/svn-work/sandwich.txt' remains in conflict
If you get a conflict, you need to do one of three things:
Merge the conflicted text “by hand” (by examining and editing the conflict markers within the file).
Copy one of the temporary files on top of your working file.
Run svn revert <filename> to throw away all of your local changes.
Once you've resolved the conflict, you need to let Subversion know by running svn resolved. This removes the three temporary files and Subversion no longer considers the file to be in a state of conflict.[6]
$ svn resolved sandwich.txt Resolved conflicted state of 'sandwich.txt'
Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little practice, it can become as easy as falling off a bike.
Here's an example. Due to a miscommunication, you and
Sally, your collaborator, both edit the file
sandwich.txt
at the same time. Sally
commits her changes, and when you go to update your working
copy, you get a conflict and you're going to have to edit
sandwich.txt
to resolve the conflicts.
First, let's take a look at the file:
$ cat sandwich.txt Top piece of bread Mayonnaise Lettuce Tomato Provolone <<<<<<< .mine Salami Mortadella Prosciutto ======= Sauerkraut Grilled Chicken >>>>>>> .r2 Creole Mustard Bottom piece of bread
The strings of less-than signs, equal signs, and greater-than signs are conflict markers, and are not part of the actual data in conflict. You generally want to ensure that those are removed from the file before your next commit. The text between the first two sets of markers is composed of the changes you made in the conflicting area:
<<<<<<< .mine Salami Mortadella Prosciutto =======
The text between the second and third sets of conflict markers is the text from Sally's commit:
======= Sauerkraut Grilled Chicken >>>>>>> .r2
Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be awfully surprised when the sandwich arrives and it's not what she wanted. So this is where you pick up the phone or walk across the office and explain to Sally that you can't get sauerkraut from an Italian deli.[7] Once you've agreed on the changes you will check in, edit your file and remove the conflict markers.
Top piece of bread Mayonnaise Lettuce Tomato Provolone Salami Mortadella Prosciutto Creole Mustard Bottom piece of bread
Now run svn resolved, and you're ready to commit your changes:
$ svn resolved sandwich.txt $ svn commit -m "Go ahead and use my sandwich, discarding Sally's edits."
Note that svn resolved, unlike most of the other commands we deal with in this chapter, requires an argument. In any case, you want to be careful and only run svn resolved when you're certain that you've fixed the conflict in your file—once the temporary files are removed, Subversion will let you commit the file even if it still contains conflict markers.
If you ever get confused while editing the conflicted file, you can always consult the three files that Subversion creates for you in your working copy—including your file as it was before you updated. You can even use a third-party interactive merging tool to examine those three files.
If you get a conflict and decide that you want to throw out your changes, you can merely copy one of the temporary files created by Subversion over the file in your working copy:
$ svn update C sandwich.txt Updated to revision 2. $ ls sandwich.* sandwich.txt sandwich.txt.mine sandwich.txt.r2 sandwich.txt.r1 $ cp sandwich.txt.r2 sandwich.txt $ svn resolved sandwich.txt
If you get a conflict, and upon examination decide that you want to throw out your changes and start your edits again, just revert your changes:
$ svn revert sandwich.txt Reverted 'sandwich.txt' $ ls sandwich.* sandwich.txt
Note that when you revert a conflicted file, you don't have to run svn resolved.
Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit your changes to the repository.
The svn commit command sends all of
your changes to the repository. When you commit a change, you
need to supply a log message,
describing your change. Your log message will be attached to
the new revision you create. If your log message is brief,
you may wish to supply it on the command line using the
--message
(or -m
)
option:
$ svn commit -m "Corrected number of cheese slices." Sending sandwich.txt Transmitting file data . Committed revision 3.
However, if you've been composing your log message as you
work, you may want to tell Subversion to get the message from
a file by passing the filename with the
--file (-F)
option:
$ svn commit -F logmsg Sending sandwich.txt Transmitting file data . Committed revision 4.
If you fail to specify either the
--message
or --file
option,
then Subversion will automatically launch your favorite editor
(see the editor-cmd
section in
the section called “Config”) for composing a log
message.
If you're in your editor writing a commit message and decide that you want to cancel your commit, you can just quit your editor without saving changes. If you've already saved your commit message, simply delete the text, save again, then abort.
$ svn commit Waiting for Emacs...Done Log message unchanged or not specified a)bort, c)ontinue, e)dit a $
The repository doesn't know or care if your changes make any sense as a whole; it only checks to make sure that nobody else has changed any of the same files that you did when you weren't looking. If somebody has done that, the entire commit will fail with a message informing you that one or more of your files is out-of-date:
$ svn commit -m "Add another rule" Sending rules.txt svn: Commit failed (details follow): svn: Your file or directory 'sandwich.txt' is probably out-of-date …
(The exact wording of this error message depends on the network protocol and server you're using, but the idea is the same in all cases.)
At this point, you need to run svn update, deal with any merges or conflicts that result, and attempt your commit again.
That covers the basic work cycle for using Subversion. There are many other features in Subversion that you can use to manage your repository and working copy, but most of your day-to-day use of Subversion will involve only the commands that we've discussed so far in this chapter. We will, however, cover a few more commands that you'll use fairly often.
Your Subversion repository is like a time machine. It keeps a record of every change ever committed, and allows you to explore this history by examining previous versions of files and directories as well as the metadata that accompanies them. With a single Subversion command, you can check out the repository (or restore an existing working copy) exactly as it was at any date or revision number in the past. However, sometimes you just want to peer into the past instead of going into the past.
There are several commands that can provide you with historical data from the repository:
Shows you broad information: log messages with date and author information attached to revisions, and which paths changed in each revision.
Shows line-level details of a particular change.
Retrieves a file as it existed in a particular revision number and display it on your screen.
Displays the files in a directory for any given revision.
To find information about the history of a file or directory, use the svn log command. svn log will provide you with a record of who made changes to a file or directory, at what revision it changed, the time and date of that revision, and, if it was provided, the log message that accompanied the commit.
$ svn log ------------------------------------------------------------------------ r3 | sally | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line Added include lines and corrected # of cheese slices. ------------------------------------------------------------------------ r2 | harry | Mon, 15 Jul 2002 17:47:57 -0500 | 1 line Added main() methods. ------------------------------------------------------------------------ r1 | sally | Mon, 15 Jul 2002 17:40:08 -0500 | 1 line Initial import ------------------------------------------------------------------------
Note that the log messages are printed in
reverse chronological order by default.
If you wish to see a different range of revisions in a
particular order, or just a single revision, pass the
--revision (-r)
option:
$ svn log -r 5:19 # shows logs 5 through 19 in chronological order $ svn log -r 19:5 # shows logs 5 through 19 in reverse order $ svn log -r 8 # shows log for revision 8
You can also examine the log history of a single file or directory. For example:
$ svn log foo.c … $ svn log http://foo.com/svn/trunk/code/foo.c …
These will display log messages only for those revisions in which the working file (or URL) changed.
If you want even more information about a file or
directory, svn log also takes a
--verbose (-v)
option. Because Subversion
allows you to move and copy files and directories, it is
important to be able to track path changes in the filesystem,
so in verbose mode, svn log will include a
list of changed paths in a revision in its output:
$ svn log -r 8 -v ------------------------------------------------------------------------ r8 | sally | 2002-07-14 08:15:29 -0500 | 1 line Changed paths: M /trunk/code/foo.c M /trunk/code/bar.h A /trunk/code/doc/README Frozzled the sub-space winch. ------------------------------------------------------------------------
svn log also takes a --quiet
(-q
) option, which suppresses the body of the
log message. When combined with --verbose
, it
gives just the names of the changed files.
We've already seen svn diff before—it displays file differences in unified diff format; it was used to show the local modifications made to our working copy before committing to the repository.
In fact, it turns out that there are three distinct uses of svn diff:
Examining local changes
Comparing your working copy to the repository
Comparing repository to repository
As we've seen, invoking svn diff with
no options will compare your working files to the cached
“pristine” copies in
the .svn
area:
$ svn diff Index: rules.txt =================================================================== --- rules.txt (revision 3) +++ rules.txt (working copy) @@ -1,4 +1,5 @@ Be kind to others Freedom = Responsibility Everything in moderation -Chew with your mouth open +Chew with your mouth closed +Listen when others are speaking $
If a single --revision
(-r
) number is passed, then your
working copy is compared to the specified revision in the
repository.
$ svn diff -r 3 rules.txt Index: rules.txt =================================================================== --- rules.txt (revision 3) +++ rules.txt (working copy) @@ -1,4 +1,5 @@ Be kind to others Freedom = Responsibility Everything in moderation -Chew with your mouth open +Chew with your mouth closed +Listen when others are speaking $
If two revision numbers, separated by a colon, are
passed via --revision (-r)
, then the two
revisions are directly compared.
$ svn diff -r 2:3 rules.txt Index: rules.txt =================================================================== --- rules.txt (revision 2) +++ rules.txt (revision 3) @@ -1,4 +1,4 @@ Be kind to others -Freedom = Chocolate Ice Cream +Freedom = Responsibility Everything in moderation Chew with your mouth open $
A more convenient way of comparing a revision to the
previous revision is to use the --change (-c)
:
$ svn diff -c 3 rules.txt Index: rules.txt =================================================================== --- rules.txt (revision 2) +++ rules.txt (revision 3) @@ -1,4 +1,4 @@ Be kind to others -Freedom = Chocolate Ice Cream +Freedom = Responsibility Everything in moderation Chew with your mouth open $
Lastly, you can compare repository revisions even when you don't have a working copy on your local machine, just by including the appropriate URL on the command line:
$ svn diff -c 5 http://svn.example.com/repos/example/trunk/text/rules.txt … $
Using svn cat and svn list, you can view various revisions of files and directories without changing the working revision of your working copy. In fact, you don't even need a working copy to use either one.
If you want to examine an earlier version of a file and not necessarily the differences between two files, you can use svn cat:
$ svn cat -r 2 rules.txt Be kind to others Freedom = Chocolate Ice Cream Everything in moderation Chew with your mouth open $
You can also redirect the output directly into a file:
$ svn cat -r 2 rules.txt > rules.txt.v2 $
The svn list command shows you what files are in a repository directory without actually downloading the files to your local machine:
$ svn list http://svn.collab.net/repos/svn README branches/ clients/ tags/ trunk/
If you want a more detailed listing, pass the
--verbose (-v)
flag to get output like
this:
$ svn list -v http://svn.collab.net/repos/svn 20620 harry 1084 Jul 13 2006 README 23339 harry Feb 04 01:40 branches/ 21282 sally Aug 27 09:41 developer-resources/ 23198 harry Jan 23 17:17 tags/ 23351 sally Feb 05 13:26 trunk/
The columns tell you the revision at which the file or directory was last modified, the user who modified it, the size if it is a file, the date it was last modified, and the item's name.
The svn list with no arguments defaults to the repository URL of the current working directory, not the local working copy directory. After all, if you wanted a listing of your local directory, you could use just plain ls (or any reasonable non-Unixy equivalent).
In addition to all of the above commands, you can use
svn update and svn
checkout with the --revision
option
to take an entire working copy “back in time”
[8]:
$ svn checkout -r 1729 # Checks out a new working copy at r1729 … $ svn update -r 1729 # Updates an existing working copy to r1729 …
Many Subversion newcomers attempt to use the above svn update example to “undo” committed changes, but this won't work as you can't commit changes that you obtain from backdating a working copy if the changed files have newer revisions. See the section called “Resurrecting Deleted Items” for a description of how to “undo” a commit.
Lastly, if you're building a release and wish to bundle up
your files from Subversion but don't want those
pesky .svn
directories in the way, then
you can use svn export to create a local
copy of all or part of your repository
sans .svn
directories. As
with svn update and
svn checkout, you can also pass the
--revision
option to svn
export:
$ svn export http://svn.example.com/svn/repos1 # Exports latest revision … $ svn export http://svn.example.com/svn/repos1 -r 1729 # Exports revision r1729 …
When Subversion modifies your working copy (or any
information within .svn
), it tries to do
so as safely as possible. Before changing the working copy,
Subversion writes its intentions to a log file. Next it
executes the commands in the log file to apply the requested
change, holding a lock on the relevant part of the working
copy while it works—to prevent other Subversion clients
from accessing the working copy in mid-change. Finally,
Subversion removes the log file. Architecturally, this is
similar to a journaled filesystem. If a Subversion operation
is interrupted (if the process is killed, or if the machine
crashes, for example), the log files remain on disk. By
re-executing the log files, Subversion can complete the
previously started operation, and your working copy can get
itself back into a consistent state.
And this is exactly what svn cleanup
does: it searches your working copy and runs any leftover
logs, removing working copy locks in the process.
If Subversion ever tells you that some part of your working copy
is “locked”, then this is the command that you
should run. Also, svn status will display
an L
next to locked items:
$ svn status L somedir M somedir/foo.c $ svn cleanup $ svn status M somedir/foo.c
Don't confuse these working copy locks with the ordinary locks that Subversion users create when using the “lock-modify-unlock” model of concurrent version control; see The three meanings of “lock” for clarification.
Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branching and merging (see Chapter 4, Branching and Merging) and properties (see the section called “Properties”). However, you may want to take a moment to skim through Chapter 9, Subversion Complete Reference to get an idea of all the many different commands that Subversion has—and how you can use them to make your work easier.
[3] Of course, you're not terribly worried—first because you know that you can't really delete anything from Subversion and, secondly, because your Subversion password isn't the same as any of the other three million passwords you have, right? Right?
[4] Of course, nothing is ever totally
deleted from the repository—just from the
HEAD
of the repository. You can get
back anything you delete by checking out (or updating
your working copy to) a revision earlier than the one in
which you deleted it. Also see
the section called “Resurrecting Deleted Items”.
[5] And also that you don't have a WAN card. Thought you got us, huh?
[6] You can always remove the temporary files yourself, but would you really want to do that when Subversion can do it for you? We didn't think so.
[7] And if you ask them for it, they may very well ride you out of town on a rail.
[8] See? We told you that Subversion was a time machine.
Table of Contents
If you've been reading this book chapter by chapter, from start to finish, you should by now have acquired enough knowledge to use the Subversion client to perform the most common version control operations. You understand how to check out a working copy from a Subversion repository. You are comfortable with submitting and receiving changes using the svn commit and svn update functions. You've probably even developed a reflex which causes you to run the svn status command almost unconsciously. For all intents and purposes, you are ready to use Subversion in a typical environment.
But the Subversion feature set doesn't stop at “common version control operations”. It has other bits of functionality besides just communicating file and directory changes to and from a central repository.
This chapter highlights some of Subversion's features that, while important, aren't part of the typical user's daily routine. It assumes that you are familiar with Subversion's basic file and directory versioning capabilities. If you aren't, you'll want to first read Chapter 1, Fundamental Concepts and Chapter 2, Basic Usage. Once you've mastered those basics and consumed this chapter, you'll be a Subversion power-user!
As you saw in the section called “Revisions”, revision numbers in Subversion are pretty straightforward—integers that keep getting larger as you commit more changes to your versioned data. Still, it doesn't take long before you can no longer remember exactly what happened in each and every revision. Fortunately, the typical Subversion workflow doesn't often demand that you supply arbitrary revisions to the Subversion operations you perform. For operations that do require a revision specifier, you generally supply a revision number that you saw in a commit email, in the output of some other Subversion operation, or in some other context that would give meaning to that particular number.
But occasionally, you need to pinpoint a moment in time for which you don't already have a revision number memorized or handy. So besides the integer revision numbers, svn allows as input some additional forms of revision specifiers—revision keywords, and revision dates.
The various forms of Subversion revision specifiers can be
mixed and matched when used to specify revision ranges. For
example, you can use -r
where REV1
:REV2
REV1
is a revision keyword
and REV2
is a revision number, or
where REV1
is a date and
REV2
is a revision keyword, and so
on. The individual revision specifiers are independently
evaluated, so you can put whatever you want on the opposite
sides of that colon.
The Subversion client understands a number of
revision keywords. These keywords can
be used instead of integer arguments to the
--revision (-r)
switch, and are resolved into
specific revision numbers by Subversion:
The latest (or “youngest”) revision in the repository.
The revision number of an item in a working copy. If the item has been locally modified, the “BASE version” refers to the way the item appears without those local modifications.
The most recent revision prior to, or equal to,
BASE
, in which an item changed.
The revision immediately before
the last revision in which an item changed.
Technically, this boils down to
COMMITTED
-1.
As can be derived from their descriptions, the
PREV
, BASE
, and
COMMITTED
revision keywords are used only
when referring to a working copy path—they don't apply
to repository URLs. HEAD
, on the other
hand, can be used in conjunction with both of these path
types.
Here are some examples of revision keywords in action:
$ svn diff -r PREV:COMMITTED foo.c # shows the last change committed to foo.c $ svn log -r HEAD # shows log message for the latest repository commit $ svn diff -r HEAD # compares your working copy (with all of its local changes) to the # latest version of that tree in the repository $ svn diff -r BASE:HEAD foo.c # compares the unmodified version of foo.c with the latest version of # foo.c in the repository $ svn log -r BASE:HEAD # shows all commit logs for the current versioned directory since you # last updated $ svn update -r PREV foo.c # rewinds the last change on foo.c, decreasing foo.c's working revision $ svn diff -r BASE:14 foo.c # compares the unmodified version of foo.c with the way foo.c looked # in revision 14
Revision numbers reveal nothing about the world outside
the version control system, but sometimes you need to
correlate a moment in real time with a moment in version
history. To facilitate this, the --revision (-r)
option can also accept as input date specifiers wrapped in
curly braces ({
and }
).
Subversion accepts the standard ISO-8601 date and time
formats, plus a few others. Here are some examples.
(Remember to use quotes around any date that contains
spaces.)
$ svn checkout -r {2006-02-17} $ svn checkout -r {15:30} $ svn checkout -r {15:30:00.200000} $ svn checkout -r {"2006-02-17 15:30"} $ svn checkout -r {"2006-02-17 15:30 +0230"} $ svn checkout -r {2006-02-17T15:30} $ svn checkout -r {2006-02-17T15:30Z} $ svn checkout -r {2006-02-17T15:30-04:00} $ svn checkout -r {20060217T1530} $ svn checkout -r {20060217T1530Z} $ svn checkout -r {20060217T1530-0500} …
When you specify a date, Subversion resolves that date to the most recent revision of the repository as of that date, and then continues to operate against that resolved revision number:
$ svn log -r {2006-11-28} ------------------------------------------------------------------------ r12 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 lines …
You can also use a range of dates. Subversion will find all revisions between both dates, inclusive:
$ svn log -r {2006-11-20}:{2006-11-29} …
Since the timestamp of a revision is stored as an unversioned, modifiable property of the revision (see the section called “Properties”, revision timestamps can be changed to represent complete falsifications of true chronology, or even removed altogether. Subversion's ability to correctly convert revision dates into real revision numbers depends on revision datestamps maintaining a sequential ordering—the younger the revision, the younger its timestamp. If this ordering isn't maintained, you will likely find that trying to use dates to specify revision ranges in your repository doesn't always return the data you might have expected.
We've already covered in detail how Subversion stores and retrieves various versions of files and directories in its repository. Whole chapters have been devoted to this most fundamental piece of functionality provided by the tool. And if the versioning support stopped there, Subversion would still be complete from a version control perspective.
But it doesn't stop there.
In addition to versioning your directories and files, Subversion provides interfaces for adding, modifying, and removing versioned metadata on each of your versioned directories and files. We refer to this metadata as properties, and they can be thought of as two-column tables that map property names to arbitrary values attached to each item in your working copy. Generally speaking, the names and values of the properties can be whatever you want them to be, with the constraint that the names must be human-readable text. And the best part about these properties is that they, too, are versioned, just like the textual contents of your files. You can modify, commit, and revert property changes as easily as you can file content changes. And the sending and receiving of property changes occurs as part of your typical commit and update operations—you don't have to change your basic processes to accommodate them.
Subversion has reserved the set of properties whose names
begin with svn:
as its own. While there
are only a handful of such properties in use today, you should
avoid creating custom properties for your own needs whose names
begin with this prefix. Otherwise, you run the risk that a
future release of Subversion will grow support for a feature
or behavior driven by a property of the same name but with
perhaps an entirely different interpretation.
Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property names and values attached to them, each revision as a whole may have arbitrary properties attached to it. The same constraints apply—human-readable names and anything-you-want binary values. The main difference is that revision properties are not versioned. In other words, if you change the value of, or delete, a revision property, there's no way within the scope of Subversion's functionality to recover the previous value.
Subversion has no particular policy regarding the use of
properties. It asks only that you not use property names that
begin with the prefix svn:
. That's the
namespace that it sets aside for its own use. And Subversion
does, in fact, use properties, both the versioned and
unversioned variety. Certain versioned properties have special
meaning or effects when found on files and directories, or house
a particular bit of information about the revisions on which
they are found. Certain revision properties are automatically
attached to revisions by Subversion's commit process, and carry
information about the revision. Most of these properties are
mentioned elsewhere in this or other chapters as part of the
more general topics to which they are related. For an
exhaustive list of Subversion's pre-defined properties, see
the section called “Subversion properties”.
In this section, we will examine the utility—both to users of Subversion, and to Subversion itself—of property support. You'll learn about the property-related svn subcommands, and how property modifications affect your normal Subversion workflow.
Just as Subversion uses properties to store extra information about the files, directories, and revisions that it contains, you might also find properties to be of similar use. You might find it useful to have a place close to your versioned data to hang custom metadata about that data.
Say you wish to design a website that houses many digital photos, and displays them with captions and a datestamp. Now, your set of photos is constantly changing, so you'd like to have as much of this site automated as possible. These photos can be quite large, so as is common with sites of this nature, you want to provide smaller thumbnail images to your site visitors.
Now, you can get this functionality using traditional
files. That is, you can have your
image123.jpg
and an
image123-thumbnail.jpg
side-by-side in a
directory. Or if you want to keep the filenames the same, you
might have your thumbnails in a different directory, like
thumbnails/image123.jpg
. You can also
store your captions and datestamps in a similar fashion, again
separated from the original image file. But the problem here
is that your collection of files grows in multiples with each
new photo added to the site.
Now consider the same website deployed in a way that makes
use of Subversion's file properties. Imagine having a single
image file, image123.jpg
, and then
properties set on that file named caption
,
datestamp
, and even
thumbnail
. Now your working copy directory
looks much more manageable—in fact, it looks to the
casual browser like there are nothing but image files in it.
But your automation scripts know better. They know that they
can use svn (or better yet, they can use
the Subversion language bindings—see the section called “Using the APIs”) to dig out the
extra information that your site needs to display without
having to read an index file or play path manipulation
games.
Custom revision properties are also frequently used. One
common such use is a property whose value contains an issue
tracker ID with which the revision is associated, perhaps
because the change made in that revision fixes a bug filed in
the tracker issue with that ID. Other uses include hanging
more friendly names on the revision—it might be hard to
remember that revision 1935 was a fully tested revision. But
if there's, say, a test-results
property on
that revision with a value all passing
,
that's meaningful information to have.
The svn command affords a few ways to add or modify file and directory properties. For properties with short, human-readable values, perhaps the simplest way to add a new property is to specify the property name and value on the command line of the propset subcommand.
$ svn propset copyright '(c) 2006 Red-Bean Software' calc/button.c property 'copyright' set on 'calc/button.c' $
But we've been touting the flexibility that Subversion
offers for your property values. And if you are planning to
have a multi-line textual, or even binary, property value, you
probably do not want to supply that value on the command line.
So the propset subcommand takes a
--file (-F)
option for specifying the name of
a file which contains the new property value.
$ svn propset license -F /path/to/LICENSE calc/button.c property 'license' set on 'calc/button.c' $
There are some restrictions on the names you can use for
properties. A property name must start with a letter, a colon
(:
), or an underscore
(_
); after that, you can also use digits,
hyphens (-
), and periods
(.
).
[9]
In addition to the propset command, the svn program supplies the propedit command. This command uses the configured editor program (see the section called “Config”) to add or modify properties. When you run the command, svn invokes your editor program on a temporary file that contains the current value of the property (or which is empty, if you are adding a new property). Then, you just modify that value in your editor program until it represents the new value you wish to store for the property, save the temporary file, and then exit the editor program. If Subversion detects that you've actually changed the existing value of the property, it will accept that as the new property value. If you exit your editor without making any changes, no property modification will occur:
$ svn propedit copyright calc/button.c ### exit the editor without changes No changes to property 'copyright' on 'calc/button.c' $
We should note that, as with other svn subcommands, those related to properties can act on multiple paths at once. This enables you to modify properties on whole sets of files with a single command. For example, we could have done:
$ svn propset copyright '(c) 2006 Red-Bean Software' calc/* property 'copyright' set on 'calc/Makefile' property 'copyright' set on 'calc/button.c' property 'copyright' set on 'calc/integer.c' … $
All of this property adding and editing isn't really very useful if you can't easily get the stored property value. So the svn program supplies two subcommands for displaying the names and values of properties stored on files and directories. The svn proplist command will list the names of properties that exist on a path. Once you know the names of the properties on the node, you can request their values individually using svn propget. This command will, given a property name and a path (or set of paths), print the value of the property to the standard output stream.
$ svn proplist calc/button.c Properties on 'calc/button.c': copyright license $ svn propget copyright calc/button.c (c) 2006 Red-Bean Software
There's even a variation of the
proplist command that will list both the
name and value of all of the properties. Simply supply the
--verbose
(-v
) option.
$ svn proplist -v calc/button.c Properties on 'calc/button.c': copyright : (c) 2006 Red-Bean Software license : ================================================================ Copyright (c) 2006 Red-Bean Software. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the recipe for Fitz's famous red-beans-and-rice. …
The last property-related subcommand is propdel. Since Subversion allows you to store properties with empty values, you can't remove a property altogether using propedit or propset. For example, this command will not yield the desired effect:
$ svn propset license '' calc/button.c property 'license' set on 'calc/button.c' $ svn proplist -v calc/button.c Properties on 'calc/button.c': copyright : (c) 2006 Red-Bean Software license : $
You need to use the propdel subcommand to delete properties altogether. The syntax is similar to the other property commands:
$ svn propdel license calc/button.c property 'license' deleted from 'calc/button.c'. $ svn proplist -v calc/button.c Properties on 'calc/button.c': copyright : (c) 2006 Red-Bean Software $
Remember those unversioned revision properties? You can
modify those, too, using the same svn
subcommands that we just described. Simply add the
--revprop
command-line parameter, and specify
the revision whose property you wish to modify. Since
revisions are global, you don't need to specify a target path
to these property-related commands so long as you are
positioned in a working copy of the repository whose
revision property you wish to modify. Otherwise, you can
simply provide the URL of any path in the repository of
interest (including the repository's root URL). For example,
you might want to replace the commit log message of an
existing revision.
[10]
If your current working directory is part of a working copy of
your repository, you can simply run the
svn propset command with no target path:
$ svn propset svn:log '* button.c: Fix a compiler warning.' -r11 --revprop property 'svn:log' set on repository revision '11' $
But even if you haven't checked out a working copy from that repository, you can still affect the property change by providing the repository's root URL:
$ svn propset svn:log '* button.c: Fix a compiler warning.' -r11 --revprop \ http://svn.example.com/repos/project property 'svn:log' set on repository revision '11' $
Note that the ability to modify these unversioned properties must be explicitly added by the repository administrator (see the section called “Commit Log Message Correction”). That's because the properties aren't versioned, so you run the risk of losing information if you aren't careful with your edits. The repository administrator can set up methods to protect against this loss, and by default, modification of unversioned properties is disabled.
Users should, where possible, use svn propedit instead of svn propset. While the end result of the commands is identical, the former will allow them to see the current value of the property they are about to change, which helps them to verify that they are, in fact, making the change they think they are making. This is especially true when modifying unversioned revision properties. Also, it is significantly easier to modify multiline property values in a text editor than at the command line.
Now that you are familiar with all of the property-related svn subcommands, let's see how property modifications affect the usual Subversion workflow. As we mentioned earlier, file and directory properties are versioned, just like your file contents. As a result, Subversion provides the same opportunities for merging—cleanly or with conflicts—someone else's modifications into your own.
And as with file contents, your property changes are local modifications, only made permanent when you commit them to the repository with svn commit. Your property changes can be easily unmade, too—the svn revert command will restore your files and directories to their un-edited states—contents, properties, and all. Also, you can receive interesting information about the state of your file and directory properties by using the svn status and svn diff commands.
$ svn status calc/button.c M calc/button.c $ svn diff calc/button.c Property changes on: calc/button.c ___________________________________________________________________ Name: copyright + (c) 2006 Red-Bean Software $
Notice how the status subcommand
displays M
in the second column instead of
the first. That is because we have modified the properties on
calc/button.c
, but not its
textual contents. Had we changed both, we would have seen
M
in the first column, too (see the section called “See an overview of your changes”).
You might also have noticed the non-standard way that Subversion currently displays property differences. You can still run svn diff and redirect the output to create a usable patch file. The patch program will ignore property patches—as a rule, it ignores any noise it can't understand. This does, unfortunately, mean that to fully apply a patch generated by svn diff, any property modifications will need to be applied by hand.
Properties are a powerful feature of Subversion, acting as key components of many Subversion features discussed elsewhere in this and other chapters—textual diff and merge support, keyword substitution, newline translation, etc. But to get the full benefit of properties, they must be set on the right files and directories. Unfortunately, that step can be easily forgotten in the routine of things, especially since failing to set a property doesn't usually result in an obvious error (at least compared to, say, failing to add a file to version control). To help your properties get applied to the places that need them, Subversion provides a couple of simple but useful features.
Whenever you introduce a file to version control using the
svn add or svn import
commands, Subversion tries to assist by setting some common
file properties automatically. First, on operating systems
whose filesystems support an execute permission bit,
Subversion will automatically set the
svn:executable
property on newly added or
imported files whose execute bit is enabled. (See the section called “File Executability” for more
about this property.) Secondly, it runs a very basic
heuristic to determine if that file contains human-readable
content. If not, Subversion will automatically set the
svn:mime-type
property on that file to
application/octet-stream
(the generic
“this is a collection of bytes” MIME type). Of
course, if Subversion guesses incorrectly, or if you wish to
set the svn:mime-type
property to something
more precise—perhaps image/png
or
application/x-shockwave-flash
—you can
always remove or edit that property. (For more on
Subversion's use of MIME types, see the section called “File Content Type”.)
Subversion also provides, via its runtime configuration
system (see the section called “Runtime Configuration Area”), a more
flexible automatic property setting feature which allows you
to create mappings of filename patterns to property names and
values. Once again, these mappings affect adds and imports,
and can not only override the default MIME type decision made
by Subversion during those operations, but can also set
additional Subversion or custom properties, too. For example,
you might create a mapping that says that any time you add
JPEG files—ones whose names match the pattern
*.jpg
—Subversion should automatically
set the svn:mime-type
property on those
files to image/jpeg
. Or perhaps any files
that match *.cpp
should have
svn:eol-style
set to
native
, and svn:keywords
set to Id
. Automatic property support is
perhaps the handiest property-related tool in the Subversion
toolbox. See the section called “Config” for more about
configuring that support.
Fortunately for Subversion users who routinely find themselves on different computers with different operating systems, Subversion's command-line program behaves almost identically on all those systems. If you know how to wield svn on one platform, you know how to wield it everywhere.
However, the same is not always true of other general classes of software, or of the actual files you keep in Subversion. For example, on a Windows machine, the definition of a “text file” would be similar to that used on a Linux box, but with a key difference—the character sequences used to mark the ends of the lines of those files. There are other differences, too. Unix platforms have (and Subversion supports) symbolic links; Windows does not. Unix platforms use filesystem permission to determine executability; Windows uses filename extensions.
Because Subversion is in no position to unite the whole world in common definitions and implementations of all of these things, the best it can do is to try to help make your life simpler when you need to work with your versioned files and directories on multiple computers and operating systems. This section describes some of the ways Subversion does this.
Subversion joins the ranks of the many applications which
recognize and make use of Multipurpose Internet Mail
Extensions (MIME) content types. Besides being a
general-purpose storage location for a file's content type,
the value of the svn:mime-type
file
property determines some behavioral characteristics of
Subversion itself.
For example, one of the benefits that Subversion typically
provides is contextual, line-based merging of changes received
from the server during an update into your working file. But
for files containing non-textual data, there is often no
concept of a “line”. So, for versioned files
whose svn:mime-type
property is set to a
non-textual MIME type (generally, something that doesn't begin
with text/
, though there are exceptions),
Subversion does not attempt to perform contextual merges
during updates. Instead, any time you have locally modified a
binary working copy file that is also being updated, your file
is left untouched and Subversion creates two new files. One
file has a .oldrev
extension and contains
the BASE revision of the file. The other file has a
.newrev
extension and contains the
contents of the updated revision of the file. This behavior
is really for the protection of the user against failed
attempts at performing contextual merges on files that simply
cannot be contextually merged.
Also, if the svn:mime-type
property is
set, then the Subversion Apache module will use its value to
populate the Content-type:
HTTP header when
responding to GET requests. This gives your web browser a
crucial clue about how to display a file when you use it to
peruse your Subversion repository's contents.
On many operating systems, the ability to execute a file
as a command is governed by the presence of an execute
permission bit. This bit usually defaults to being disabled,
and must be explicitly enabled by the user for each file that
needs it. But it would be a monumental hassle to have to
remember exactly which files in freshly checked-out working
copy were supposed to have their executable bits toggled on,
and then to have to do that toggling. So, Subversion provides
the svn:executable
property as a way to
specify that the executable bit for the file on which that
property is set should be enabled, and Subversion honors that
request when populating working copies with such files.
This property has no effect on filesystems that have no
concept of an executable permission bit, such as FAT32 and
NTFS.
[12]
Also, although it has no defined values, Subversion will force
its value to *
when setting this property.
Finally, this property is valid only on files, not on
directories.
Unless otherwise noted using a versioned file's
svn:mime-type
property, Subversion
assumes the file contains human-readable data. Generally
speaking, Subversion only uses this knowledge to determine
if contextual difference reports for that file are
possible. Otherwise, to Subversion, bytes are bytes.
This means that by default, Subversion doesn't pay any
attention to the type of end-of-line (EOL)
markers used in your files. Unfortunately,
different operating systems have different conventions about
which character sequences represent the end of a line of text
in a file. For example, the usual line ending token used by
software on the Windows platform is a pair of ASCII control
characters—a carriage return (CR
)
followed by a line feed (LF
). Unix
software, however, just uses the LF
character to denote the end of a line.
Not all of the various tools on these operating systems
understand files that contain line endings
in a format that differs from the native line
ending style of the operating system on which
they are running. So, typically, Unix programs
treat the CR
character present in Windows
files as a regular character (usually rendered as
^M
), and Windows programs combine
all of the lines of a Unix file into one giant line because
no carriage return-linefeed (or CRLF
)
character combination was found to denote the ends of
the lines.
This sensitivity to foreign EOL markers can be frustrating for folks who share a file across different operating systems. For example, consider a source code file, and developers that edit this file on both Windows and Unix systems. If all the developers always use tools which preserve the line ending style of the file, no problems occur.
But in practice, many common tools either fail to properly read a file with foreign EOL markers, or they convert the file's line endings to the native style when the file is saved. If the former is true for a developer, he has to use an external conversion utility (such as dos2unix or its companion, unix2dos) to prepare the file for editing. The latter case requires no extra preparation. But both cases result in a file that differs from the original quite literally on every line! Prior to committing his changes, the user has two choices. Either he can use a conversion utility to restore the modified file to the same line ending style that it was in before his edits were made. Or, he can simply commit the file—new EOL markers and all.
The result of scenarios like these include wasted time and unnecessary modifications to committed files. Wasted time is painful enough. But when commits change every line in a file, this complicates the job of determining which of those lines were changed in a non-trivial way. Where was that bug really fixed? On what line was a syntax error introduced?
The solution to this problem is the
svn:eol-style
property. When this
property is set to a valid value, Subversion uses it to
determine what special processing to perform on the file so
that the file's line ending style isn't flip-flopping with
every commit that comes from a different operating
system. The valid values are:
native
This causes the file to contain the EOL markers
that are native to the operating system on which
Subversion was run. In other words, if a user on a
Windows machine checks out a working copy that
contains a file with an
svn:eol-style
property set to
native
, that file will contain
CRLF
EOL markers. A Unix user
checking out a working copy which contains the same
file will see LF
EOL markers in his
copy of the file.
Note that Subversion will actually store the file
in the repository using normalized
LF
EOL markers regardless of the
operating system. This is basically transparent to
the user, though.
CRLF
This causes the file to contain
CRLF
sequences for EOL markers,
regardless of the operating system in use.
LF
This causes the file to contain
LF
characters for EOL markers,
regardless of the operating system in use.
CR
This causes the file to contain
CR
characters for EOL markers,
regardless of the operating system in use. This line
ending style is not very common. It was used on older
Macintosh platforms (on which Subversion doesn't even
run).
In any given working copy there is a good chance that alongside all those versioned files and directories are other files and directories which are neither versioned nor intended to be. Text editors litter directories with backup files. Software compilers generate intermediate—or even final—files which you typically wouldn't bother to version. And users themselves drop various other files and directories wherever they see fit, often in version control working copies.
It's ludicrous to expect Subversion working copies to be somehow impervious to this kind of clutter and impurity. In fact, Subversion counts it as a feature that its working copies are just typical directories, just like unversioned trees. But these not-to-be-versioned files and directories can cause some annoyance for Subversion users. For example, because the svn add and svn import commands act recursively by default, and don't know which files in a given tree you do and don't wish to version, it's easy to accidentally add stuff to version control that you didn't mean to. And because svn status reports, by default, every item of interest in a working copy—including unversioned files and directories—its output can get quite noisy where many of these things exist.
So Subversion provides two ways for telling it which files you would prefer that it simply disregard. One of the ways involves the use of Subversion's runtime configuration system (see the section called “Runtime Configuration Area”), and therefore applies to all the Subversion operations which make use of that runtime configuration, generally those performed on a particular computer, or by a particular user of a computer. The other way makes use of Subversion's directory property support, is more tightly bound to the versioned tree itself, and therefore affects everyone who has a working copy of that tree. Both of the mechanisms use file patterns.
The Subversion runtime configuration system provides an
option, global-ignores
, whose value is a
whitespace-delimited collection of file patterns (also known as
globs). The Subversion client checks
these patterns against the names of the files which are
candidates for addition to version control, as well as to
unversioned files which the svn status
command notices. If any file's name matches one of the
patterns, Subversion will basically act as if the file didn't
exist at all. This is really useful for the kinds of files that
you almost never want to version, such as editor backup files
like Emacs' *~
and .*~
files.
When found on a versioned directory, the
svn:ignore
property is expected to contain a
list of newline-delimited file patterns which Subversion should
use to determine ignorable objects in that same directory.
These patterns do not override those found in the
global-ignores
runtime configuration option,
but are instead appended to that list. And it's worth noting
again that, unlike the global-ignores
option,
the patterns found in the svn:ignore
property apply only to the directory on which that property is
set, and not to any of its subdirectories. The
svn:ignore
property is a good way to tell
Subversion to ignore files that are likely to be present in
every user's working copy of that directory, such as compiler
output or—to use an example more appropriate to this
book—the HTML, PDF, or PostScript files generated as the
result of a conversion of some source DocBook XML files to a
more legible output format.
Subversion's support for ignorable file patterns extends only to the one-time process of adding unversioned files and directories to version control. Once an object is under Subversion's control, the ignore pattern mechanisms no longer apply to it. In other words, don't expect Subversion to avoid committing changes you've made to a versioned file simply because that file's name matches an ignore pattern—Subversion always notices all of its versioned objects.
The global list of ignore patterns tends to be more a
matter of personal taste, and tied more closely to a user's
particular tool chain than to the details of any particular
working copy's needs. So, the rest of this section will focus
on the svn:ignore
property and its
uses.
Say you have the following output from svn status:
$ svn status calc M calc/button.c ? calc/calculator ? calc/data.c ? calc/debug_log ? calc/debug_log.1 ? calc/debug_log.2.gz ? calc/debug_log.3.gz
In this example, you have made some property modifications
to button.c
, but in your working copy you
also have some unversioned files: the latest
calculator
program that you've compiled
from your source code, a source file named
data.c
, and a set of debugging output log
files. Now, you know that your build system always results in
the calculator
program being generated.
[13]
And you know that your test suite always leaves those debugging
log files lying around. These facts are true for all working
copies of this project, not just your own. And you know that
you aren't interested in seeing those things every time you run
svn status, and pretty sure that nobody else
is interested in them either. So you use svn propedit
svn:ignore calc to add some ignore patterns to the
calc
directory. For example, you might add
this as the new value of the svn:ignore
property:
calculator debug_log*
After you've added this property, you will now have a local
property modification on the calc
directory. But notice what else is different about your
svn status output:
$ svn status M calc M calc/button.c ? calc/data.c
Now, all that cruft is missing from the output! Of course,
your calculator
compiled program and all
those logfiles are still in your working copy. Subversion is
simply not reminding you that they are present and unversioned.
And now with all the uninteresting noise removed from the
display, you are left with more interesting items—such as
that source code file data.c
that you
probably forgot to add to version control.
Of course, this less-verbose report of your working copy
status isn't the only one available. If you actually want to
see the ignored files as part of the status report, you can pass
the --no-ignore
option to Subversion:
$ svn status --no-ignore M calc M calc/button.c I calc/calculator ? calc/data.c I calc/debug_log I calc/debug_log.1 I calc/debug_log.2.gz I calc/debug_log.3.gz
As mentioned earlier, the list of file patterns to ignore is
also used by svn add and svn
import. Both of these operations involve asking
Subversion to begin managing some set of files and directories.
Rather than force the user to pick and choose which files in a
tree she wishes to start versioning, Subversion uses the ignore
patterns—both the global and the per-directory
lists—to determine which files should not be swept into
the version control system as part of a larger recursive
addition or import operation. And here again, you can use the
--no-ignore
option to tell Subversion ignore
its ignores list and operate on all the files and directories
present.
Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a versioned file—into the contents of the file itself. Keywords generally provide information about the last modification made to the file. Because this information changes each time the file changes, and more importantly, just after the file changes, it is a hassle for any process except the version control system to keep the data completely up-to-date. Left to human authors, the information would inevitably grow stale.
For example, say you have a document in which you would
like to display the last date on which it was modified. You
could burden every author of that document to, just before
committing their changes, also tweak the part of the
document that describes when it was last changed. But
sooner or later, someone would forget to do that. Instead,
simply ask Subversion to perform keyword substitution on the
LastChangedDate
keyword. You control
where the keyword is inserted into your document by placing
a keyword anchor at the desired
location in the file. This anchor is just a string of text
formatted as
$
KeywordName
$
.
All keywords are case-sensitive where they appear as
anchors in files: you must use the correct capitalization in
order for the keyword to be expanded. You should consider the
value of the svn:keywords
property to be
case-sensitive too—certain keyword names will be recognized
regardless of case, but this behavior is deprecated.
Subversion defines the list of keywords available for substitution. That list contains the following five keywords, some of which have aliases that you can also use:
Date
This keyword describes the last time the file was
known to have been changed in the repository, and
is of the form $Date:
2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006)
$
. It may also be specified as
LastChangedDate
.
Revision
This keyword describes the last known revision in
which this file changed in the repository, and looks
something like $Revision: 144 $
.
It may also be specified as
LastChangedRevision
or
Rev
.
Author
This keyword describes the last known user to
change this file in the repository, and looks
something like $Author: harry $
.
It may also be specified as
LastChangedBy
.
HeadURL
This keyword describes the full URL to the latest
version of the file in the repository, and looks
something like $HeadURL:
http://svn.collab.net/repos/trunk/README $
.
It may be abbreviated as
URL
.
Id
This keyword is a compressed combination of the
other keywords. Its substitution looks something like
$Id: calc.c 148 2006-07-28 21:30:43Z sally
$
, and is interpreted to mean that the file
calc.c
was last changed in revision
148 on the evening of July 28, 2006 by the user
sally
.
Several of the previous descriptions use the phrase “last known” or similar wording. Keep in mind that keyword expansion is a client-side operation, and your client only “knows” about changes which have occurred in the repository when you update your working copy to include those changes. If you never update your working copy, your keywords will never expand to different values even if those versioned files are being changed regularly in the repository.
Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to perform textual substitutions on your file contents unless explicitly asked to do so. After all, you might be writing a document [14] about how to use keywords, and you don't want Subversion to substitute your beautiful examples of un-substituted keyword anchors!
To tell Subversion whether or not to substitute keywords
on a particular file, we again turn to the property-related
subcommands. The svn:keywords
property,
when set on a versioned file, controls which keywords will
be substituted on that file. The value is a space-delimited
list of the keyword names or aliases found in the previous
table.
For example, say you have a versioned file named
weather.txt
that looks like
this:
Here is the latest report from the front lines. $LastChangedDate$ $Rev$ Cumulus clouds are appearing more frequently as summer approaches.
With no svn:keywords
property set on
that file, Subversion will do nothing special. Now, let's
enable substitution of the
LastChangedDate
keyword.
$ svn propset svn:keywords "Date Author" weather.txt property 'svn:keywords' set on 'weather.txt' $
Now you have made a local property modification on the
weather.txt
file. You will see no
changes to the file's contents (unless you made some of your
own prior to setting the property). Notice that the file
contained a keyword anchor for the Rev
keyword, yet we did not include that keyword in the property
value we set. Subversion will happily ignore requests to
substitute keywords that are not present in the file, and
will not substitute keywords that are not present in the
svn:keywords
property value.
Immediately after you commit this property change,
Subversion will update your working file with the new
substitute text. Instead of seeing your keyword anchor
$LastChangedDate$
, you'll see its
substituted result. That result also contains the name of
the keyword, and continues to be bounded by the dollar sign
($
) characters. And as we predicted, the
Rev
keyword was not substituted because
we didn't ask for it to be.
Note also that we set the svn:keywords
property to “Date Author” yet the keyword
anchor used the alias $LastChangedDate$
and still expanded correctly.
Here is the latest report from the front lines. $LastChangedDate: 2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $ $Rev$ Cumulus clouds are appearing more frequently as summer approaches.
If someone else now commits a change to
weather.txt
, your copy of that file
will continue to display the same substituted keyword value
as before—until you update your working copy. At that
time the keywords in your weather.txt
file will be re-substituted with information that
reflects the most recent known commit to that file.
Subversion 1.2 introduced a new variant of the keyword
syntax which brought additional, useful—though perhaps
atypical—functionality. You can now tell Subversion
to maintain a fixed length (in terms of the number of bytes
consumed) for the substituted keyword. By using a
double-colon (::
) after the keyword name,
followed by a number of space characters, you define that
fixed width. When Subversion goes to substitute your
keyword for the keyword and its value, it will essentially
replace only those space characters, leaving the overall
width of the keyword field unchanged. If the substituted
value is shorter than the defined field width, there will be
extra padding characters (spaces) at the end of the
substituted field; if it is too long, it is truncated with a
special hash (#
) character just before
the final dollar sign terminator.
For example, say you have a document in which you have some section of tabular data reflecting the document's Subversion keywords. Using the original Subversion keyword substitution syntax, your file might look something like:
$Rev$: Revision of last commit $Author$: Author of last commit $Date$: Date of last commit
Now, that looks nice and tabular at the start of things. But when you then commit that file (with keyword substitution enabled, of course), you see:
$Rev: 12 $: Revision of last commit $Author: harry $: Author of last commit $Date: 2006-03-15 02:33:03 -0500 (Wed, 15 Mar 2006) $: Date of last commit
The result is not so beautiful. And you might be tempted to then adjust the file after the substitution so that it again looks tabular. But that only holds as long as the keyword values are the same width. If the last committed revision rolls into a new place value (say, from 99 to 100), or if another person with a longer username commits the file, stuff gets all crooked again. However, if you are using Subversion 1.2 or better, you can use the new fixed-length keyword syntax, define some field widths that seem sane, and now your file might look like this:
$Rev:: $: Revision of last commit $Author:: $: Author of last commit $Date:: $: Date of last commit
You commit this change to your file. This time,
Subversion notices the new fixed-length keyword syntax, and
maintains the width of the fields as defined by the padding
you placed between the double-colon and the trailing dollar
sign. After substitution, the width of the fields is
completely unchanged—the short values for
Rev
and Author
are
padded with spaces, and the long Date
field is truncated by a hash character:
$Rev:: 13 $: Revision of last commit $Author:: harry $: Author of last commit $Date:: 2006-03-15 0#$: Date of last commit
The use of fixed-length keywords is especially handy when performing substitutions into complex file formats that themselves use fixed-length fields for data, or for which the stored size of a given data field is overbearingly difficult to modify from outside the format's native application (such as for Microsoft Office documents).
Be aware that because the width of a keyword field is measured in bytes, the potential for corruption of multi-byte values exists. For example, a username which contains some multi-byte UTF-8 characters might suffer truncation in the middle of the string of bytes which make up one of those characters. The result will be a mere truncation when viewed at the byte level, but will likely appear as a string with an incorrect or garbled final character when viewed as UTF-8 text. It is conceivable that certain applications, when asked to load the file, would notice the broken UTF-8 text and deem the entire file corrupt, refusing to operate on the file altogether. So, when limiting keywords to a fixed size, choose a size that allows for this type of byte-wise expansion.
Subversion's copy-modify-merge version control model lives and dies on its data merging algorithms, specifically on how well those algorithms perform when trying to resolve conflicts caused by multiple users modifying the same file concurrently. Subversion itself provides only one such algorithm, a three-way differencing algorithm which is smart enough to handle data at a granularity of a single line of text. Subversion also allows you to supplement its content merge processing with external differencing utilities (as described in the section called “External diff3”), some of which may do an even better job, perhaps providing granularity of a word or a single character of text. But common among those algorithms is that they generally work only on text files. The landscape starts to look pretty grim when you start talking about content merges of non-textual file formats. And when you can't find a tool that can handle that type of merging, you begin to run into problems with the copy-modify-merge model.
Let's look at a real-life example of where this model runs aground. Harry and Sally are both graphic designers working on the same project, a bit of marketing collateral for an automobile mechanic. Central to the design of a particular poster is an image of a car in need of some body work, stored in a file using the PNG image format. The poster's layout is almost finished, and both Harry and Sally are pleased with the particular photo they chose for their damaged car—a baby blue 1967 Ford Mustang with an unfortunate bit of crumpling on the left front fender.
Now, as is common in graphic design work, there's a change
in plans which causes the car's color to be a concern. So Sally
updates her working copy to HEAD
, fires up
her photo editing software, and sets about tweaking the image so
that the car is now cherry red. Meanwhile, Harry, feeling
particularly inspired that day, decides that the image would
have greater impact if the car also appears to have suffered
greater impact. He, too, updates to HEAD
,
and then draws some cracks on the vehicle's windshield. He
manages to finish his work before Sally finishes hers, and after
admiring the fruits of his undeniable talent, commits the
modified image. Shortly thereafter, Sally is finished with the
car's new finish, and tries to commit her changes. But, as
expected, Subversion fails the commit, informing Sally that now
her version of the image is out of date.
Here's where the difficulty sets in. Were Harry and Sally making changes to a text file, Sally would simply update her working copy, receiving Harry's changes in the process. In the worst possible case, they would have modified the same region of the file, and Sally would have to work out by hand the proper resolution to the conflict. But these aren't text files—they are binary images. And while it's a simple matter to describe what one would expect the results of this content merge to be, there is precious little chance that any software exists which is smart enough to examine the common baseline image that each of these graphic artists worked against, the changes that Harry made, and the changes that Sally made, and spit out an image of a busted-up red Mustang with a cracked windshield!
Clearly, things would have gone more smoothly if Harry and Sally had serialized their modifications to the image—if, say, Harry had waited to draw his windshield cracks on Sally's now-red car, or if Sally had tweaked the color of a car whose windshield was already cracked. As is discussed in the section called “The Copy-Modify-Merge Solution”, most of these types of problems go away entirely where perfect communication between Harry and Sally exists. [15] But as one's version control system is, in fact, one form of communication, it follows that having that software facilitate the serialization of non-parallelizable editing efforts is no bad thing. This where Subversion's implementation of the lock-modify-unlock model steps into the spotlight. This is where we talk about Subversion's locking feature, which is similar to the “reserved checkouts” mechanisms of other version control systems.
Subversion's locking feature serves two main purposes:
Serializing access to a versioned object. By allowing a user to programmatically claim the exclusive right to change to a file in the repository, that user can be reasonably confident that energy invested on unmergeable changes won't be wasted—his commit of those changes will succeed.
Aiding communication. By alerting other users that serialization is in effect for a particular versioned object, those other users can reasonably expect that the object is about to be changed by someone else, and they, too, can avoid wasting their time and energy on unmergeable changes that won't be committable due to eventual out-of-dateness.
When referring to Subversion's locking feature, one is actually talking about a fairly diverse collection of behaviors which include the ability to lock a versioned file [16] (claiming the exclusive right to modify the file), to unlock that file (yielding that exclusive right to modify), to see reports about which files are locked and by whom, to annotate files for which locking before editing is strongly advised, and so on. In this section, we'll cover all of these facets of the larger locking feature.
In the Subversion repository, a lock is a piece of metadata which grants exclusive access to one user to change a file. This user is said to be the lock owner. Each lock also has a unique identifier, typically a long string of characters, known as the lock token. The repository manages locks, ultimately handling their creation, enforcement, and removal. If any commit transaction attempts to modify or delete a locked file (or delete one of the parent directories of the file), the repository will demand two pieces of information—that the client performing the commit be authenticated as the lock owner, and that the lock token has been provided as part of the commit process as a sort of proof that client knows which lock it is using.
To demonstrate lock creation, let's refer back to our example of multiple graphic designers working with on the same binary image files. Harry has decided to change a JPEG image. To prevent other people from committing changes to the file while he is modifying it (as well as alerting them that he is about to change it), he locks the file in the repository using the svn lock command.
$ svn lock banana.jpg -m "Editing file for tomorrow's release." 'banana.jpg' locked by user 'harry'. $
There are a number of new things demonstrated in the
previous example. First, notice that Harry passed the
--message (-m)
option to svn
lock. Similar to svn commit, the
svn lock command can take comments (either
via --message (-m)
or --file
(-F)
) to describe the reason for locking the file.
Unlike svn commit, however, svn
lock will not demand a message by launching your
preferred text editor. Lock comments are optional, but still
recommended to aid communication.
Secondly, the lock attempt succeeded. This means that the file wasn't already locked, and that Harry had the latest version of the file. If Harry's working copy of the file had been out-of-date, the repository would have rejected the request, forcing Harry to svn update and reattempt the locking command. The locking command would also have failed if the file already been locked by someone else.
As you can see, the svn lock command prints confirmation of the successful lock. At this point, the fact that the file is locked becomes apparent in the output of the svn status and svn info reporting subcommands.
$ svn status K banana.jpg $ svn info banana.jpg Path: banana.jpg Name: banana.jpg URL: http://svn.example.com/repos/project/banana.jpg Repository UUID: edb2f264-5ef2-0310-a47a-87b0ce17a8ec Revision: 2198 Node Kind: file Schedule: normal Last Changed Author: frank Last Changed Rev: 1950 Last Changed Date: 2006-03-15 12:43:04 -0600 (Wed, 15 Mar 2006) Text Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006) Properties Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006) Checksum: 3b110d3b10638f5d1f4fe0f436a5a2a5 Lock Token: opaquelocktoken:0c0f600b-88f9-0310-9e48-355b44d4a58e Lock Owner: harry Lock Created: 2006-06-14 17:20:31 -0500 (Wed, 14 Jun 2006) Lock Comment (1 line): Editing file for tomorrow's release. $
That the svn info command, which does
not contact the repository when run against working copy
paths, can display the lock token reveals an important fact
about lock tokens—that they are cached in the working
copy. The presence of the lock token is critical. It gives
the working copy authorization to make use of the lock later
on. Also, the svn status command shows a
K
next to the file (short for locKed),
indicating that the lock token is present.
Now that Harry has locked banana.jpg
,
Sally is unable to change or delete that file:
$ svn delete banana.jpg D banana.jpg $ svn commit -m "Delete useless file." Deleting banana.jpg svn: Commit failed (details follow): svn: DELETE of '/repos/project/!svn/wrk/64bad3a9-96f9-0310-818a-df4224ddc35d/banana.jpg': 423 Locked (http://svn.example.com) $
But Harry, after touching up the banana's shade of yellow, is able to commit his changes to the file. That's because he authenticates as the lock owner, and also because his working copy holds the correct lock token:
$ svn status M K banana.jpg $ svn commit -m "Make banana more yellow" Sending banana.jpg Transmitting file data . Committed revision 2201. $ svn status $
Notice that after the commit is finished, svn
status shows that the lock token is no longer
present in working copy. This is the standard behavior of
svn commit—it searches the working
copy (or list of targets, if you provide such a list) for
local modifications, and sends all the lock tokens it
encounters during this walk to the server as part of the
commit transaction. After the commit completes successfully,
all of the repository locks that were mentioned are
released—even on files that weren't
committed. This is meant to discourage users from
being sloppy about locking, or from holding locks for too
long. If Harry haphazardly locks thirty files in a directory
named images
because he's unsure of which
files he needs to change, yet only only changes four of those
files, when he runs svn commit images, the
process will still release all thirty locks.
This behavior of automatically releasing locks can be
overridden with the --no-unlock
option to
svn commit. This is best used for those
times when you want to commit changes, but still plan to make
more changes and thus need to retain existing locks. You can
also make this your default behavior by setting the
no-unlock
runtime configuration option (see
the section called “Runtime Configuration Area”).
Of course, locking a file doesn't oblige one to commit a change to it. The lock can be released at any time with a simple svn unlock command:
$ svn unlock banana.c 'banana.c' unlocked.
When a commit fails due to someone else's locks, it's fairly easy to learn about them. The easiest of these is svn status --show-updates:
$ svn status -u M 23 bar.c M O 32 raisin.jpg * 72 foo.h Status against revision: 105 $
In this example, Sally can see not only that her copy of
foo.h
is out-of-date, but that one of the
two modified files she plans to commit is locked in the
repository. The O
symbol stands for
“Other”, meaning that a lock exists on the file,
and was created by somebody else. If she were to attempt a
commit, the lock on raisin.jpg
would
prevent it. Sally is left wondering who made the lock, when,
and why. Once again, svn info has the
answers:
$ svn info http://svn.example.com/repos/project/raisin.jpg Path: raisin.jpg Name: raisin.jpg URL: http://svn.example.com/repos/project/raisin.jpg Repository UUID: edb2f264-5ef2-0310-a47a-87b0ce17a8ec Revision: 105 Node Kind: file Last Changed Author: sally Last Changed Rev: 32 Last Changed Date: 2006-01-25 12:43:04 -0600 (Sun, 25 Jan 2006) Lock Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b Lock Owner: harry Lock Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006) Lock Comment (1 line): Need to make a quick tweak to this image. $
Just as svn info can be used to examine objects in the working copy, it can also be used to examine objects in the repository. If the main argument to svn info is a working copy path, then all of the working copy's cached information is displayed; any mention of a lock means that the working copy is holding a lock token (if a file is locked by another user or in another working copy, svn info on a working copy path will show no lock information at all). If the main argument to svn info is a URL, then the information reflects the latest version of an object in the repository, and any mention of a lock describes the current lock on the object.
So in this particular example, Sally can see that Harry locked the file on February 16th to “make a quick tweak”. It being June, she suspects that he probably forgot all about the lock. She might phone Harry to complain and ask him to release the lock. If he's unavailable, she might try to forcibly break the lock herself or ask an administrator to do so.
A repository lock isn't sacred—in Subversion's default configuration state, locks can be released not only by the person who created them, but by anyone at all. When somebody other than the original lock creator destroys a lock, we refer to this as breaking the lock.
From the administrator's chair, it's simple to break locks. The svnlook and svnadmin programs have the ability to display and remove locks directly from the repository. (For more information about these tools, see the section called “An Administrator's Toolkit”.)
$ svnadmin lslocks /usr/local/svn/repos Path: /project2/images/banana.jpg UUID Token: opaquelocktoken:c32b4d88-e8fb-2310-abb3-153ff1236923 Owner: frank Created: 2006-06-15 13:29:18 -0500 (Thu, 15 Jun 2006) Expires: Comment (1 line): Still improving the yellow color. Path: /project/raisin.jpg UUID Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b Owner: harry Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006) Expires: Comment (1 line): Need to make a quick tweak to this image. $ svnadmin rmlocks /usr/local/svn/repos /project/raisin.jpg Removed lock on '/project/raisin.jpg'. $
The more interesting option is allowing users to break
each other's locks over the network. To do this, Sally simply
needs to pass the --force
to the unlock
command:
$ svn status -u M 23 bar.c M O 32 raisin.jpg * 72 foo.h Status against revision: 105 $ svn unlock raisin.jpg svn: 'raisin.jpg' is not locked in this working copy $ svn info raisin.jpg | grep URL URL: http://svn.example.com/repos/project/raisin.jpg $ svn unlock http://svn.example.com/repos/project/raisin.jpg svn: Unlock request failed: 403 Forbidden (http://svn.example.com) $ svn unlock --force http://svn.example.com/repos/project/raisin.jpg 'raisin.jpg' unlocked. $
Now, Sally's initial attempt to unlock failed because she
ran svn unlock directly on her working copy
of the file, and no lock token was present. To remove the
lock directly from the repository, she needs to pass a URL
to svn unlock. Her first attempt to unlock
the URL fails, because she can't authenticate as the lock
owner (nor does she have the lock token). But when she
passes --force
, the authentication and
authorization requirements are ignored, and the remote lock is
broken.
Simply breaking a lock may not be enough. In
the running example, Sally may not only want to break Harry's
long-forgotten lock, but re-lock the file for her own use.
She can accomplish this by running svn unlock
--force and then svn lock
back-to-back, but there's a small chance that somebody else
might lock the file between the two commands. The simpler thing
to is steal the lock, which involves
breaking and re-locking the file all in one atomic step. To
do this, Sally passes the --force
option
to svn lock:
$ svn lock raisin.jpg svn: Lock request failed: 423 Locked (http://svn.example.com) $ svn lock --force raisin.jpg 'raisin.jpg' locked by user 'sally'. $
In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's working copy still contains the original lock token, but that lock no longer exists. The lock token is said to be defunct. The lock represented by the lock token has either been broken (no longer in the repository), or stolen (replaced with a different lock). Either way, Harry can see this by asking svn status to contact the repository:
$ svn status K raisin.jpg $ svn status -u B 32 raisin.jpg $ svn update B raisin.jpg $ svn status $
If the repository lock was broken, then svn
status --show-updates displays a
B
(Broken) symbol next to the file. If a
new lock exists in place of the old one, then a
T
(sTolen) symbol is shown. Finally,
svn update notices any defunct lock tokens
and removes them from the working copy.
We've seen how svn lock and svn unlock can be used to create, release, break, and steal locks. This satisfies the goal of serializing commit access to a file. But what about the larger problem of preventing wasted time?
For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles away, Sally wants to do the same thing. She doesn't think to run svn status --show-updates, so she has no idea that Harry has already locked the file. She spends hours editing the file, and when she tries to commit her change, she discovers that either the file is locked or that she's out-of-date. Regardless, her changes aren't mergeable with Harry's. One of these two people has to throw away their work, and a lot of time has been wasted.
Subversion's solution to this problem is to provide a
mechanism to remind users that a file ought to be locked
before the editing begins. The mechanism
is a special property, svn:needs-lock
. If
that property is attached to a file (regardless of its value,
which is irrelevant), then Subversion will try to use
filesystem-level permissions to make the file read-only—unless,
of course, the user has explicitly locked the file.
When a lock token is present (as a result of running
svn lock), the file becomes read-write.
When the lock is released, the file becomes read-only
again.
The theory, then, is that if the image file has this property attached, then Sally would immediately notice something is strange when she opens the file for editing: many applications alert users immediately when a read-only file is opened for editing, and nearly all would prevent her from saving changes to the file. This reminds her to lock the file before editing, whereby she discovers the pre-existing lock:
$ /usr/local/bin/gimp raisin.jpg gimp: error: file is read-only! $ ls -l raisin.jpg -r--r--r-- 1 sally sally 215589 Jun 8 19:23 raisin.jpg $ svn lock raisin.jpg svn: Lock request failed: 423 Locked (http://svn.example.com) $ svn info http://svn.example.com/repos/project/raisin.jpg | grep Lock Lock Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b Lock Owner: harry Lock Created: 2006-06-08 07:29:18 -0500 (Thu, 08 June 2006) Lock Comment (1 line): Making some tweaks. Locking for the next two hours. $
Users and administrators alike are encouraged to attach
the svn:needs-lock
property to any file
which cannot be contextually merged. This is the primary
technique for encouraging good locking habits and preventing
wasted effort.
Note that this property is a communication tool which works independently from the locking system. In other words, any file can be locked, whether or not this property is present. And conversely, the presence of this property doesn't make the repository require a lock when committing.
Unfortunately, the system isn't flawless. It's possible that even when a file has the property, the read-only reminder won't always work. Sometimes applications misbehave and “hijack” the read-only file, silently allowing users to edit and save the file anyway. There's not much that Subversion can do in this situation—at the end of the day, there's simply no substitution for good interpersonal communication. [17]
Sometimes it is useful to construct a working copy that is made out of a number of different checkouts. For example, you may want different subdirectories to come from different locations in a repository, or perhaps from different repositories altogether. You could certainly set up such a scenario by hand—using svn checkout to create the sort of nested working copy structure you are trying to achieve. But if this layout is important for everyone who uses your repository, every other user will need to perform the same checkout operations that you did.
Fortunately, Subversion provides support for
externals definitions. An externals
definition is a mapping of a local directory to the
URL—and ideally a particular revision—of a
versioned directory. In Subversion, you declare externals
definitions in groups using the svn:externals
property. You can create or modify this property using
svn propset or svn
propedit (see the section called “Manipulating Properties”). It can be set on any versioned directory, and its value is
a multi-line table of subdirectories (relative to the versioned
directory on which the property is set), optional revision
flags, and fully qualified, absolute Subversion repository
URLs.
$ svn propget svn:externals calc third-party/sounds http://sounds.red-bean.com/repos third-party/skins http://skins.red-bean.com/repositories/skinproj third-party/skins/toolkit -r21 http://svn.red-bean.com/repos/skin-maker
The convenience of the svn:externals
property is that once it is set on a versioned directory,
everyone who checks out a working copy with that directory also
gets the benefit of the externals definition. In other words,
once one person has made the effort to define those nested
working copy checkouts, no one else has to
bother—Subversion will, upon checkout of the original
working copy, also check out the external working copies.
The relative target subdirectories of externals definitions must not already exist on your or other users' systems—Subversion will create them when it checks out the external working copy.
Note the previous externals definition example. When
someone checks out a working copy of the
calc
directory, Subversion also continues
to check out the items found in its externals definition.
$ svn checkout http://svn.example.com/repos/calc A calc A calc/Makefile A calc/integer.c A calc/button.c Checked out revision 148. Fetching external item into calc/third-party/sounds A calc/third-party/sounds/ding.ogg A calc/third-party/sounds/dong.ogg A calc/third-party/sounds/clang.ogg … A calc/third-party/sounds/bang.ogg A calc/third-party/sounds/twang.ogg Checked out revision 14. Fetching external item into calc/third-party/skins …
If you need to change the externals definition, you can do
so using the regular property modification subcommands. When
you commit a change to the svn:externals
property, Subversion will synchronize the checked-out items
against the changed externals definition when you next run
svn update. The same thing will happen when
others update their working copies and receive your changes to
the externals definition.
Because the svn:externals
property has
a multiline value, we strongly recommend that you use
svn propedit instead of svn
propset.
You should seriously consider using explicit revision numbers in all of your externals definitions. Doing so means that you get to decide when to pull down a different snapshot of external information, and exactly which snapshot to pull. Besides avoiding the surprise of getting changes to third-party repositories that you might not have any control over, using explicit revision numbers also means that as you backdate your working copy to a previous revision, your externals definitions will also revert to the way they looked in that previous revision, which in turn means that the external working copies will be updated to match they way they looked back when your repository was at that previous revision. For software projects, this could be the difference between a successful and a failed build of an older snapshot of your complex codebase.
The svn status command also recognizes
externals definitions, displaying a status code of
X
for the disjoint subdirectories into which
externals are checked out, and then recursing into those
subdirectories to display the status of the external items
themselves.
The support that exists for externals definitions in
Subversion is less than ideal, though. First, an
externals definition can only point to directories, not files.
Second, the externals definition cannot point to relative paths
(paths like ../../skins/myskin
). Third, the
working copies created via the externals definition support are
still disconnected from the primary working copy (on whose
versioned directories the svn:externals
property was actually set). And Subversion still only truly
operates on non-disjoint working copies. So, for example, if
you want to commit changes that you've made in one or more of
those external working copies, you must run svn
commit explicitly on those working
copies—committing on the primary working copy will not
recurse into any external ones.
Also, since the definitions themselves use absolute URLs,
moving or copying a directory to which they are attached will
not affect what gets checked out as an external (though the
relative local target subdirectory will, of course, move with
renamed directory). This can be confusing—even
frustrating—in certain situations. For example, say you
have a top-level directory named
my-project
, and you've created an externals
definition on one of its subdirectories
(my-project/some-dir
) which tracks the
latest revision of another of its subdirectories
(my-project/external-dir
).
$ svn checkout http://svn.example.com/projects . A my-project A my-project/some-dir A my-project/external-dir … Fetching external item into 'my-project/some-dir/subdir' Checked out external at revision 11. Checked out revision 11. $ svn propget svn:externals my-project/some-dir subdir http://svn.example.com/projects/my-project/external-dir $
Now you use svn move to rename the
my-project
directory. At this point, your
externals definition will still refer to a path under the
my-project
directory, even though that
directory no longer exists.
$ svn move -q my-project renamed-project $ svn commit -m "Rename my-project to renamed-project." Deleting my-project Adding my-renamed-project Committed revision 12. $ svn update Fetching external item into 'renamed-project/some-dir/subdir' svn: Target path does not exist $
Also, the absolute URLs that externals definitions use
can cause problems with repositories that are available via
multiple URL schemes. For example, if your Subversion server is
configured to allow everyone to check out the repository over
http://
or https://
, but
only allow commits to come in via https://
,
you have an interesting problem on your hands. If your
externals definitions use the http://
form
of the repository URLs, you won't be able to commit anything
from the working copies created by those externals. On the
other hand, if they use the https://
form of
the URLs, anyone who might be checking out via
http://
because their client doesn't support
https://
will be unable to fetch the external
items. Be aware, too, that if you need to re-parent your
working copy (using svn switch --relocate),
externals definitions will not also be
re-parented.
Finally, there might be times when you would prefer that
svn subcommands would not recognize, or
otherwise operate upon, the external working copies. In those instances,
you can pass the --ignore-externals
option to
the subcommand.
We copy, move, rename, and completely replace files and directories on our computers all the time. And your version control system shouldn't get in the way of your doing these things with your version-controlled files and directories, either. Subversion's file management support is quite liberating, affording almost as much flexibility for versioned files as you'd expect when manipulating your unversioned ones. But that flexibility means that across the lifetime of your repository, a given versioned object might have many paths, and a given path might represent several entirely different versioned objects. And this introduces a certain level of complexity to your interactions with those paths and objects.
Subversion is pretty smart about noticing when an object's version history includes such “changes of address”. For example, if you ask for the revision history log of a particular file that was renamed last week, Subversion happily provides all those logs—the revision in which the rename itself happened, plus the logs of relevant revisions both before and after that rename. So, most of the time, you don't even have to think about such things. But occasionally, Subversion needs your help to clear up ambiguities.
The simplest example of this occurs when a directory or file
is deleted from version control, and then a new directory or
file is created with the same name and added to version control.
Clearly the thing you deleted and the thing you later added
aren't the same thing. They merely happen to have had the same
path, /trunk/object
for example. What,
then, does it mean to ask Subversion about the history of
/trunk/object
? Are you asking about the
thing currently at that location, or the old thing you deleted
from that location? Are you asking about the operations that
have happened to all the objects that have
ever lived at that path? Clearly, Subversion needs a hint about
what you really want.
And thanks to moves, versioned object history can get far
more twisted than that, even. For example, you might have a
directory named concept
, containing some
nascent software project you've been toying with. Eventually,
though, that project matures to the point that the idea seems to
actually have some wings, so you do the unthinkable and decide
to give the project a name.
[18]
Let's say you called your software Frabnaggilywort. At this
point, it makes sense to rename the directory to reflect the
project's new name, so concept
is renamed
to frabnaggilywort
. Life goes on,
Frabnaggilywort releases a 1.0 version, and is downloaded and
used daily by hordes of people aiming to improve their
lives.
It's a nice story, really, but it doesn't end there.
Entrepreneur that you are, you've already got another think in
the tank. So you make a new directory,
concept
, and the cycle begins again. In
fact, the cycle begins again many times over the years, each
time starting with that old concept
directory, then sometimes seeing that directory renamed as the
idea cures, sometimes seeing it deleted when you scrap the idea.
Or, to get really sick, maybe you rename
concept
to something else for a while, but
later rename the thing back to concept
for
some reason.
In scenarios like these, attempting to instruct Subversion to work with these re-used paths can be a little like instructing a motorist in Chicago's West Suburbs to drive east down Roosevelt Road and turn left onto Main Street. In a mere twenty minutes, you can cross “Main Street” in Wheaton, Glen Ellyn, and Lombard. And no, they aren't the same street. Our motorist—and our Subversion—need a little more detail in order to do the right thing.
In version 1.1, Subversion introduced a way for you to tell
it exactly which Main Street you meant. It's called the
peg revision, and it is a revision
provided to Subversion for the sole purpose of identifying a
unique line of history. Because at most one versioned object
may occupy a path at any given time—or, more precisely, in
any one revision—the combination of a path and a peg
revision is all that is needed to refer to a specific line of
history. Peg revisions are specified to the Subversion
command-line client using at syntax, so
called because the syntax involves appending an “at
sign” (@
) and the peg revision to the
end of the path with which the revision is associated.
But what of the --revision (-r)
of which
we've spoken so much in this book? That revision (or set of
revisions) is called the operative
revision (or operative revision
range). Once a particular line of history has been
identified using a path and peg revision, Subversion performs
the requested operation using the operative revision(s). To map
this to our Chicagoland streets analogy, if we are told to go to
606 N. Main Street in Wheaton,
[19]
we can think of “Main Street” as our path and
“Wheaton” as our peg revision. These two pieces of
information identify a unique path which can travelled (north or
south on Main Street), and will keep us from travelling up and
down the wrong Main Street in search of our destination. Now we
throw in “606 N.” as our operative revision, of
sorts, and we know exactly where to
go.
Say that long ago we created our repository, and in revision 1
added our first concept
directory, plus an
IDEA
file in that directory talking about
the concept. After several revisions in which real code was
added and tweaked, we, in revision 20, renamed this directory to
frabnaggilywort
. By revision 27, we had a
new concept, a new concept
directory to
hold it, and a new IDEA
file to describe
it. And then five years and twenty thousand revisions flew by,
just like they would in any good romance story.
Now, years later, we wonder what the
IDEA
file looked like back in revision 1.
But Subversion needs to know if we are asking about how the
current file looked back in revision 1, or
if we are asking for the contents of whatever file lived at
concepts/IDEA
in revision 1. Certainly
those questions have different answers, and because of peg
revisions, you can ask either of them. To find out how the
current IDEA
file looked in that old
revision, you run:
$ svn cat -r 1 concept/IDEA svn: Unable to find repository location for 'concept/IDEA' in revision 1
Of course, in this example, the current
IDEA
file didn't exist yet in revision 1,
so Subversion gives an error. The command above is shorthand
for a longer notation which explicitly lists a peg revision.
The expanded notation is:
$ svn cat -r 1 concept/IDEA@BASE svn: Unable to find repository location for 'concept/IDEA' in revision 1
And when executed, it has the expected results.
The perceptive reader is probably wondering at this point if
the peg revision syntax causes problems for working copy paths
or URLs that actually have at signs in them. After
all, how does svn know whether
news@11
is the name of a directory in my
tree, or just a syntax for “revision 11 of
news
”? Thankfully, while
svn will always assume the latter, there is a
trivial workaround. You need only append an at sign to the
end of the path, such as news@11@
.
svn only cares about the last at sign in
the argument, and it is not considered illegal to omit a literal
peg revision specifier after that at sign. This workaround
even applies to paths that end in an at sign—you would
use filename@@
to talk about a file named
filename@
.
Let's ask the other question, then—in revision 1, what
were the contents of whatever file occupied the address
concepts/IDEA
at the time? We'll use an
explicit peg revision to help us out.
$ svn cat concept/IDEA@1 The idea behind this project is to come up with a piece of software that can frab a naggily wort. Frabbing naggily worts is tricky business, and doing it incorrectly can have serious ramifications, so we need to employ over-the-top input validation and data verification mechanisms.
Notice that we didn't provide an operative revision this time. That's because when no operative revision is specified, Subversion assumes a default operative revision that's the same as the peg revision.
As you can see, the output from our operation appears to be
correct. The text even mentions frabbing naggily worts, so this
is almost certainly the file which describes the software now
called Frabnaggilywort. In fact, we can verify this using the
combination of an explicit peg revision and explicit operative
revision. We know that in HEAD
, the
Frabnaggilywort project is located in the
frabnaggilywort
directory. So we specify
that we want to see how the line of history identified in
HEAD
as the path
frabnaggilywort/IDEA
looked in revision
1.
$ svn cat -r 1 frabnaggilywort/IDEA@HEAD The idea behind this project is to come up with a piece of software that can frab a naggily wort. Frabbing naggily worts is tricky business, and doing it incorrectly can have serious ramifications, so we need to employ over-the-top input validation and data verification mechanisms.
And the peg and operative revisions need not be so trivial,
either. For example, say frabnaggilywort
had been deleted from HEAD
, but we know it
existed in revision 20, and we want to see the diffs for its
IDEA
file between revisions 4 and 10. We
can use the peg revision 20 in conjunction with the URL that
would have held Frabnaggilywort's IDEA
file
in revision 20, and then use 4 and 10 as our operative revision
range.
$ svn diff -r 4:10 http://svn.red-bean.com/projects/frabnaggilywort/IDEA@20 Index: frabnaggilywort/IDEA =================================================================== --- frabnaggilywort/IDEA (revision 4) +++ frabnaggilywort/IDEA (revision 10) @@ -1,5 +1,5 @@ -The idea behind this project is to come up with a piece of software -that can frab a naggily wort. Frabbing naggily worts is tricky -business, and doing it incorrectly can have serious ramifications, so -we need to employ over-the-top input validation and data verification -mechanisms. +The idea behind this project is to come up with a piece of +client-server software that can remotely frab a naggily wort. +Frabbing naggily worts is tricky business, and doing it incorrectly +can have serious ramifications, so we need to employ over-the-top +input validation and data verification mechanisms.
Fortunately, most folks aren't faced with such complex situations. But when you are, remember that peg revisions are that extra hint Subversion needs to clear up ambiguity.
At some point, you're going to need to understand how your
Subversion client communicates with its server. Subversion's
networking layer is abstracted, meaning that Subversion clients
exhibit the same general behaviors no matter what sort of server
they are operating against. Whether speaking the HTTP protocol
(http://
) with the Apache HTTP Server or
speaking the custom Subversion protocol
(svn://
) with svnserve,
the basic network model is the same. In this section, we'll
explain the basics of that network model, including how
Subversion manages authentication and authorization
matters.
The Subversion client spends most of its time managing working copies. When it needs information from a remote repository, however, it makes a network request, and the server responds with an appropriate answer. The details of the network protocol are hidden from the user—the client attempts to access a URL, and depending on the URL scheme, a particular protocol is used to contact the server (see Repository URLs).
Run svn --version to see which URL schemes and protocols the client knows how to use.
When the server process receives a client request, it often demands that the client identify itself. It issues an authentication challenge to the client, and the client responds by providing credentials back to the server. Once authentication is complete, the server responds with the original information the client asked for. Notice that this system is different from systems like CVS, where the client pre-emptively offers credentials (“logs in”) to the server before ever making a request. In Subversion, the server “pulls” credentials by challenging the client at the appropriate moment, rather than the client “pushing” them. This makes certain operations more elegant. For example, if a server is configured to allow anyone in the world to read a repository, then the server will never issue an authentication challenge when a client attempts to svn checkout.
If the particular network requests issued by the client
result in a new revision being created in the repository,
(e.g. svn commit), then Subversion uses the
authenticated username associated with those requests as the
author of the revision. That is, the authenticated user's
name is stored as the value of the
svn:author
property on the new revision
(see the section called “Subversion properties”). If
the client was not authenticated (in other words, the server
never issued an authentication challenge), then the revision's
svn:author
property is empty.
Many servers are configured to require authentication on
every request. This would be a big annoyance to users, if
they were forced to type their passwords over and over again.
Fortunately, the Subversion client has a remedy for
this—a built-in system for caching authentication
credentials on disk. By default, whenever the command-line
client successfully responds to a server's authentication
challenge, it saves the credentials in the user's private
runtime configuration area
(~/.subversion/auth/
on Unix-like systems
or %APPDATA%/Subversion/auth/
on Windows;
see the section called “Runtime Configuration Area” for more details
about the runtime configuration system). Successful
credentials are cached on disk, keyed on a combination of the
server's hostname, port, and authentication realm.
When the client receives an authentication challenge, it first looks for the appropriate credentials in the user's disk cache. If seemingly suitable credentials are not present, or if the cached credentials ultimately fail to authenticate, then the client will, by default, fall back to prompting the user for the necessary information.
The security-conscious reader will suspect immediately that there is reason for concern here. “Caching passwords on disk? That's terrible! You should never do that!”
The Subversion developers recognize the legitimacy of such concerns, and so Subversion works with available mechanisms provided by the operating system and environment to try to minimize the risk of leaking this information. Here's a breakdown of what this means for users on the most common platforms:
On Windows 2000 and later, the Subversion client uses standard Windows cryptography services to encrypt the password on disk. Because the encryption key is managed by Windows and is tied to the user's own login credentials, only the user can decrypt the cached password. (Note that if the user's Windows account password is reset by an administrator, all of the cached passwords become undecipherable. The Subversion client will behave as if they don't exist, prompting for passwords when required.)
Similarly, on Mac OS X, the Subversion client stores all repository passwords in the login keyring (managed by the Keychain service), which is protected by the user's account password. User preference settings can impose additional policies, such as requiring the user's account password be entered each time the Subversion password is used.
For other Unix-like operating systems, no standard
“keychain” services exist. However,
the auth/
caching area is still
permission-protected so that only the user (owner) can
read data from it, not the world at large. The operating
system's own file permissions protect the passwords.
Of course, for the truly paranoid, none of these mechanisms meets the test of perfection. So for those folks willing to sacrifice convenience for the ultimate security, Subversion provides various ways of disabling its credentials caching system altogether.
To disable caching for a single command, pass the
--no-auth-cache
option:
$ svn commit -F log_msg.txt --no-auth-cache Authentication realm: <svn://host.example.com:3690> example realm Username: joe Password for 'joe': Adding newfile Transmitting file data . Committed revision 2324. # password was not cached, so a second commit still prompts us $ svn delete newfile $ svn commit -F new_msg.txt Authentication realm: <svn://host.example.com:3690> example realm Username: joe …
Or, if you want to disable credential caching permanently,
you can edit the config
file in your
runtime configuration area, and set the
store-auth-creds
option to
no
. This will prevent the storing of
credentials used in any Subversion interactions you perform on
the affected computer. This can be extended to cover all
users on the computer, too, by modifying the system-wide
runtime configuration area (described in the section called “Configuration Area Layout”).
[auth] store-auth-creds = no
Sometimes users will want to remove specific credentials
from the disk cache. To do this, you need to navigate into
the auth/
area and manually delete the
appropriate cache file. Credentials are cached in individual
files; if you look inside each file, you will see keys and
values. The svn:realmstring
key describes
the particular server realm that the file is associated
with:
$ ls ~/.subversion/auth/svn.simple/ 5671adf2865e267db74f09ba6f872c28 3893ed123b39500bca8a0b382839198e 5c3c22968347b390f349ff340196ed39 $ cat ~/.subversion/auth/svn.simple/5671adf2865e267db74f09ba6f872c28 K 8 username V 3 joe K 8 password V 4 blah K 15 svn:realmstring V 45 <https://svn.domain.com:443> Joe's repository END
Once you have located the proper cache file, just delete it.
One last word about svn's
authentication behavior, specifically regarding the
--username
and --password
options. Many client subcommands accept these options, but it
is important to understand using these options does
not automatically send credentials to the
server. As discussed earlier, the server “pulls”
credentials from the client when it deems necessary; the
client cannot “push” them at will. If a username
and/or password are passed as options, they will only be
presented to the server if the server requests them.
[20]
These options are typically used to authenticate as a
different user than Subversion would have chosen by default
(such as your system login name), or when trying to avoid
interactive prompting (such as when calling
svn from a script).
Here is a final summary that describes how a Subversion client behaves when it receives an authentication challenge.
First, the client checks whether the user specified
any credentials as command-line options
(--username
and/or
--password
). If not, or if these options
fail to authenticate successfully, then
the client looks up the server's hostname, port, and realm in
the runtime auth/
area, to see if the
user already has the appropriate credentials cached. If
not, or if the cached credentials fail to authenticate,
then
finally, the client resorts to prompting the user
(unless instructed not to do so via the
--non-interactive
option or its
client-specific equivalents).
If the client successfully authenticates by any of the methods listed above, it will attempt to cache the credentials on disk (unless the user has disabled this behavior, as mentioned earlier).
[9] If you're familiar with XML, this is pretty much the ASCII subset of the syntax for XML "Name".
[10] Fixing spelling errors, grammatical gotchas, and
“just-plain-wrongness” in commit log
messages is perhaps the most common use case for the
--revprop
option.
[11] You think that was rough? During that same era,
WordPerfect also used .DOC
for their
proprietary file format's preferred extension!
[12] The Windows filesystems use file extensions (such as
.EXE
, .BAT
, and
.COM
) to denote executable
files.
[13] Isn't that the whole point of a build system?
[14] … or maybe even a section of a book …
[15] Communication wouldn't have been such bad medicine for Harry and Sally's Hollywood namesakes, either, for that matter.
[16] Subversion does not currently allow locks on directories.
[17] Except, perhaps, a classic Vulcan mind-meld.
[18] “You're not supposed to name it. Once you name it, you start getting attached to it.”—Mike Wazowski
[19] 606 N. Main Street, Wheaton, Illinois, is the home of the Wheaton History Center. Get it—“History Center”? It seemed appropriate….
[20] Again, a common mistake is to misconfigure a
server so that it never issues an authentication challenge.
When users pass --username
and
--password
options to the client, they're
surprised to see that they're never used, i.e. new revisions
still appear to have been committed
anonymously!
Table of Contents
“君子务本 (It is upon the Trunk that a gentleman works.)” | ||
--Confucius |
Branching, tagging, and merging are concepts common to almost all version control systems. If you're not familiar with these ideas, we provide a good introduction in this chapter. If you are familiar, then hopefully you'll find it interesting to see how Subversion implements these ideas.
Branching is a fundamental part of version control. If you're going to allow Subversion to manage your data, then this is a feature you'll eventually come to depend on. This chapter assumes that you're already familiar with Subversion's basic concepts (Chapter 1, Fundamental Concepts).
Suppose it's your job to maintain a document for a division in your company, a handbook of some sort. One day a different division asks you for the same handbook, but with a few parts “tweaked” for them, since they do things slightly differently.
What do you do in this situation? You do the obvious thing: you make a second copy of your document, and begin maintaining the two copies separately. As each department asks you to make small changes, you incorporate them into one copy or the other.
You often want to make the same change to both copies. For example, if you discover a typo in the first copy, it's very likely that the same typo exists in the second copy. The two documents are almost the same, after all; they only differ in small, specific ways.
This is the basic concept of a branch—namely, a line of development that exists independently of another line, yet still shares a common history if you look far enough back in time. A branch always begins life as a copy of something, and moves on from there, generating its own history (see Figure 4.1, “Branches of development”).
Subversion has commands to help you maintain parallel branches of your files and directories. It allows you to create branches by copying your data, and remembers that the copies are related to one another. It also helps you duplicate changes from one branch to another. Finally, it can make portions of your working copy reflect different branches, so that you can “mix and match” different lines of development in your daily work.
At this point, you should understand how each commit creates an entire new filesystem tree (called a “revision”) in the repository. If not, go back and read about revisions in the section called “Revisions”.
For this chapter, we'll go back to the same example from
Chapter 1, Fundamental Concepts. Remember that you and your
collaborator, Sally, are sharing a repository that contains two
projects, paint
and
calc
. Notice that in Figure 4.2, “Starting repository layout”, however, each project
directory now contains subdirectories named
trunk
and branches
.
The reason for this will soon become clear.
As before, assume that Sally and you both have working
copies of the “calc” project. Specifically, you
each have a working copy of /calc/trunk
.
All the files for the project are in this subdirectory rather
than in /calc
itself, because your team has
decided that /calc/trunk
is where the
“main line” of development is going to take
place.
Let's say that you've been given the task of implementing
radical new project feature. It will take a long time to write,
and will affect all the files in the project. The problem here
is that you don't want to interfere with Sally, who is in the
process of fixing small bugs here and there. She's depending on
the fact that the latest version of the project (in
/calc/trunk
) is always usable. If you
start committing your changes bit-by-bit, you'll surely break
things for Sally.
One strategy is to crawl into a hole: you and Sally can stop
sharing information for a week or two. That is, start gutting
and reorganizing all the files in your working copy, but don't
commit or update until you're completely finished with the task.
There are a number of problems with this, though. First, it's
not very safe. Most people like to save their work to the
repository frequently, should something bad accidentally happen
to their working copy. Second, it's not very flexible. If you
do your work on different computers (perhaps you have a working
copy of /calc/trunk
on two different
machines), you'll need to manually copy your changes back and
forth, or just do all the work on a single computer. By that
same token, it's difficult to share your changes-in-progress
with anyone else. A common software development “best
practice” is to allow your peers to review your work as you
go. If nobody sees your intermediate commits, you lose
potential feedback. Finally, when you're finished with all your
changes, you might find it very difficult to re-merge your final
work with the rest of the company's main body of code. Sally
(or others) may have made many other changes in the repository
that are difficult to incorporate into your working
copy—especially if you run svn update
after weeks of isolation.
The better solution is to create your own branch, or line of development, in the repository. This allows you to save your half-broken work frequently without interfering with others, yet you can still selectively share information with your collaborators. You'll see exactly how this works later on.
Creating a branch is very simple—you make a copy of
the project in the repository using the svn
copy command. Subversion is not only able to copy
single files, but whole directories as well. In this case,
you want to make a copy of the
/calc/trunk
directory. Where should the
new copy live? Wherever you wish—it's a matter of
project policy. Let's say that your team has a policy of
creating branches in the /calc/branches
area of the repository, and you want to name your branch
my-calc-branch
. You'll want to create a
new directory,
/calc/branches/my-calc-branch
, which
begins its life as a copy of
/calc/trunk
.
There are two different ways to make a copy. We'll
demonstrate the messy way first, just to make the concept
clear. To begin, check out a working copy of the project's
root directory, /calc
:
$ svn checkout http://svn.example.com/repos/calc bigwc A bigwc/trunk/ A bigwc/trunk/Makefile A bigwc/trunk/integer.c A bigwc/trunk/button.c A bigwc/branches/ Checked out revision 340.
Making a copy is now simply a matter of passing two working-copy paths to the svn copy command:
$ cd bigwc $ svn copy trunk branches/my-calc-branch $ svn status A + branches/my-calc-branch
In this case, the svn copy command
recursively copies the trunk
working
directory to a new working directory,
branches/my-calc-branch
. As you can see
from the svn status command, the new
directory is now scheduled for addition to the repository.
But also notice the “+” sign next to the letter
A. This indicates that the scheduled addition is a
copy of something, not something new.
When you commit your changes, Subversion will create
/calc/branches/my-calc-branch
in the
repository by copying /calc/trunk
, rather
than resending all of the working copy data over the
network:
$ svn commit -m "Creating a private branch of /calc/trunk." Adding branches/my-calc-branch Committed revision 341.
And now here's the easier method of creating a branch, which we should have told you about in the first place: svn copy is able to operate directly on two URLs.
$ svn copy http://svn.example.com/repos/calc/trunk \ http://svn.example.com/repos/calc/branches/my-calc-branch \ -m "Creating a private branch of /calc/trunk." Committed revision 341.
From the repository's point of view, there's really no
difference between these two methods. Both procedures create
a new directory in revision 341, and the new directory is a
copy of /calc/trunk
. This is shown in
Figure 4.3, “Repository with new copy”. Notice
that the second method, however, performs an
immediate commit in constant time.
[21]
It's an easier procedure, because it doesn't require you to
check out a large portion of the repository. In fact, this
technique doesn't even require you to have a working copy at
all. This is the way most users create branches.
Now that you've created a branch of the project, you can check out a new working copy to start using it:
$ svn checkout http://svn.example.com/repos/calc/branches/my-calc-branch A my-calc-branch/Makefile A my-calc-branch/integer.c A my-calc-branch/button.c Checked out revision 341.
There's nothing special about this working copy; it simply
mirrors a different directory in the repository. When you
commit changes, however, Sally won'tsee them when she
updates, because her working copy is of
/calc/trunk
. (Be sure to read the section called “Traversing Branches” later in this chapter: the
svn switch command is an alternate way of
creating a working copy of a branch.)
Let's pretend that a week goes by, and the following commits happen:
You make a change to
/calc/branches/my-calc-branch/button.c
,
which creates revision 342.
You make a change to
/calc/branches/my-calc-branch/integer.c
,
which creates revision 343.
Sally makes a change to
/calc/trunk/integer.c
, which creates
revision 344.
There are now two independent lines of development, shown
in Figure 4.4, “The branching of one file's history”, happening on
integer.c
.
Things get interesting when you look at the history of
changes made to your copy of
integer.c
:
$ pwd /home/user/my-calc-branch $ svn log -v integer.c ------------------------------------------------------------------------ r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines Changed paths: M /calc/branches/my-calc-branch/integer.c * integer.c: frozzled the wazjub. ------------------------------------------------------------------------ r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines Changed paths: A /calc/branches/my-calc-branch (from /calc/trunk:340) Creating a private branch of /calc/trunk. ------------------------------------------------------------------------ r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines Changed paths: M /calc/trunk/integer.c * integer.c: changed a docstring. ------------------------------------------------------------------------ r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines Changed paths: M /calc/trunk/integer.c * integer.c: adding this file to the project. ------------------------------------------------------------------------
Notice that Subversion is tracing the history of your
branch's integer.c
all the way back
through time, even traversing the point where it was copied.
It shows the creation of the branch as an event in the
history, because integer.c
was implicitly
copied when all of /calc/trunk/
was
copied. Now look what happens when Sally runs the same
command on her copy of the file:
$ pwd /home/sally/calc $ svn log -v integer.c ------------------------------------------------------------------------ r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines Changed paths: M /calc/trunk/integer.c * integer.c: fix a bunch of spelling errors. ------------------------------------------------------------------------ r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines Changed paths: M /calc/trunk/integer.c * integer.c: changed a docstring. ------------------------------------------------------------------------ r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines Changed paths: M /calc/trunk/integer.c * integer.c: adding this file to the project. ------------------------------------------------------------------------
Sally sees her own revision 344 change, but not the change you made in revision 343. As far as Subversion is concerned, these two commits affected different files in different repository locations. However, Subversion does show that the two files share a common history. Before the branch-copy was made in revision 341, they used to be the same file. That's why you and Sally both see the changes made in revisions 303 and 98.
There are two important lessons that you should remember from this section. First, Subversion has no internal concept of a branch—it only knows how to make copies. When you copy a directory, the resulting directory is only a “branch” because you attach that meaning to it. You may think of the directory differently, or treat it differently, but to Subversion it's just an ordinary directory that happens to carry some extra historical information. Second, because of this copy mechanism, Subversion's branches exist as normal filesystem directories in the repository. This is different from other version control systems, where branches are typically defined by adding extra-dimensional “labels” to collections of files.
Now you and Sally are working on parallel branches of the project: you're working on a private branch, and Sally is working on the trunk, or main line of development.
For projects that have a large number of contributors, it's common for most people to have working copies of the trunk. Whenever someone needs to make a long-running change that is likely to disrupt the trunk, a standard procedure is to create a private branch and commit changes there until all the work is complete.
So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very easy to drift too far apart. Remember that one of the problems with the “crawl in a hole” strategy is that by the time you're finished with your branch, it may be near-impossible to merge your changes back into the trunk without a huge number of conflicts.
Instead, you and Sally might continue to share changes as you work. It's up to you to decide which changes are worth sharing; Subversion gives you the ability to selectively “copy” changes between branches. And when you're completely finished with your branch, your entire set of branch changes can be copied back into the trunk.
In the previous section, we mentioned that both you and
Sally made changes to integer.c
on
different branches. If you look at Sally's log message for
revision 344, you can see that she fixed some spelling errors.
No doubt, your copy of the same file still has the same spelling
errors. It's likely that your future changes to this file will
be affecting the same areas that have the spelling errors, so
you're in for some potential conflicts when you merge your
branch someday. It's better, then, to receive Sally's change
now, before you start working too heavily
in the same places.
It's time to use the svn merge command. This command, it turns out, is a very close cousin to the svn diff command (which you read about in Chapter 2, Basic Usage). Both commands are able to compare any two objects in the repository and describe the differences. For example, you can ask svn diff to show you the exact change made by Sally in revision 344:
$ svn diff -c 344 http://svn.example.com/repos/calc/trunk Index: integer.c =================================================================== --- integer.c (revision 343) +++ integer.c (revision 344) @@ -147,7 +147,7 @@ case 6: sprintf(info->operating_system, "HPFS (OS/2 or NT)"); break; case 7: sprintf(info->operating_system, "Macintosh"); break; case 8: sprintf(info->operating_system, "Z-System"); break; - case 9: sprintf(info->operating_system, "CPM"); break; + case 9: sprintf(info->operating_system, "CP/M"); break; case 10: sprintf(info->operating_system, "TOPS-20"); break; case 11: sprintf(info->operating_system, "NTFS (Windows NT)"); break; case 12: sprintf(info->operating_system, "QDOS"); break; @@ -164,7 +164,7 @@ low = (unsigned short) read_byte(gzfile); /* read LSB */ high = (unsigned short) read_byte(gzfile); /* read MSB */ high = high << 8; /* interpret MSB correctly */ - total = low + high; /* add them togethe for correct total */ + total = low + high; /* add them together for correct total */ info->extra_header = (unsigned char *) my_malloc(total); fread(info->extra_header, total, 1, gzfile); @@ -241,7 +241,7 @@ Store the offset with ftell() ! */ if ((info->data_offset = ftell(gzfile))== -1) { - printf("error: ftell() retturned -1.\n"); + printf("error: ftell() returned -1.\n"); exit(1); } @@ -249,7 +249,7 @@ printf("I believe start of compressed data is %u\n", info->data_offset); #endif - /* Set postion eight bytes from the end of the file. */ + /* Set position eight bytes from the end of the file. */ if (fseek(gzfile, -8, SEEK_END)) { printf("error: fseek() returned non-zero\n");
The svn merge command is almost exactly the same. Instead of printing the differences to your terminal, however, it applies them directly to your working copy as local modifications:
$ svn merge -c 344 http://svn.example.com/repos/calc/trunk U integer.c $ svn status M integer.c
The output of svn merge shows that your
copy of integer.c
was patched. It now
contains Sally's change—the change has been
“copied” from the trunk to your working copy of
your private branch, and now exists as a local modification.
At this point, it's up to you to review the local modification
and make sure it works correctly.
In another scenario, it's possible that things may not have
gone so well, and that integer.c
may have
entered a conflicted state. You might need to resolve the
conflict using standard procedures (see Chapter 2, Basic Usage), or if you decide that the merge was a
bad idea altogether, simply give up and svn
revert the local change.
But assuming that you've reviewed the merged change, you can svn commit the change as usual. At that point, the change has been merged into your repository branch. In version control terminology, this act of copying changes between branches is commonly called porting changes.
When you commit the local modification, make sure your log message mentions that you're porting a specific change from one branch to another. For example:
$ svn commit -m "integer.c: ported r344 (spelling fixes) from trunk." Sending integer.c Transmitting file data . Committed revision 360.
As you'll see in the next sections, this is a very important “best practice” to follow.
A word of warning: while svn diff and svn merge are very similar in concept, they do have different syntax in many cases. Be sure to read about them in Chapter 9, Subversion Complete Reference for details, or ask svn help. For example, svn merge requires a working-copy path as a target, i.e. a place where it should apply the tree-changes. If the target isn't specified, it assumes you are trying to perform one of the following common operations:
You want to merge directory changes into your current working directory.
You want to merge the changes in a specific file into a file by the same name which exists in your current working directory.
If you are merging a directory and haven't specified a target path, svn merge assumes the first case above and tries to apply the changes into your current directory. If you are merging a file, and that file (or a file by the same name) exists in your current working directory, svn merge assumes the second case and tries to apply the changes to a local file with the same name.
If you want changes applied somewhere else, you'll need to say so. For example, if you're sitting in the parent directory of your working copy, you'll have to specify the target directory to receive the changes:
$ svn merge -c 344 http://svn.example.com/repos/calc/trunk my-calc-branch U my-calc-branch/integer.c
You've now seen an example of the svn merge command, and you're about to see several more. If you're feeling confused about exactly how merging works, you're not alone. Many users (especially those new to version control) are initially perplexed about the proper syntax of the command, and about how and when the feature should be used. But fear not, this command is actually much simpler than you think! There's a very easy technique for understanding exactly how svn merge behaves.
The main source of confusion is the name of the command. The term “merge” somehow denotes that branches are combined together, or that there's some sort of mysterious blending of data going on. That's not the case. A better name for the command might have been svn diff-and-apply, because that's all that happens: two repository trees are compared, and the differences are applied to a working copy.
The command takes three arguments:
An initial repository tree (often called the left side of the comparison),
A final repository tree (often called the right side of the comparison),
A working copy to accept the differences as local changes (often called the target of the merge).
Once these three arguments are specified, the two trees are compared, and the resulting differences are applied to the target working copy as local modifications. When the command is done, the results are no different than if you had hand-edited the files, or run various svn add or svn delete commands yourself. If you like the results, you can commit them. If you don't like the results, you can simply svn revert all of the changes.
The syntax of svn merge allows you to specify the three necessary arguments rather flexibly. Here are some examples:
$ svn merge http://svn.example.com/repos/branch1@150 \ http://svn.example.com/repos/branch2@212 \ my-working-copy $ svn merge -r 100:200 http://svn.example.com/repos/trunk my-working-copy $ svn merge -r 100:200 http://svn.example.com/repos/trunk
The first syntax lays out all three arguments explicitly, naming each tree in the form URL@REV and naming the working copy target. The second syntax can be used as a shorthand for situations when you're comparing two different revisions of the same URL. The last syntax shows how the working-copy argument is optional; if omitted, it defaults to the current directory.
Merging changes sounds simple enough, but in practice it can become a headache. The problem is that if you repeatedly merge changes from one branch to another, you might accidentally merge the same change twice. When this happens, sometimes things will work fine. When patching a file, Subversion typically notices if the file already has the change, and does nothing. But if the already-existing change has been modified in any way, you'll get a conflict.
Ideally, your version control system should prevent the double-application of changes to a branch. It should automatically remember which changes a branch has already received, and be able to list them for you. It should use this information to help automate merges as much as possible.
Unfortunately, Subversion is not such a system; it does not yet record any information about merge operations. [22] When you commit local modifications, the repository has no idea whether those changes came from running svn merge, or from just hand-editing the files.
What does this mean to you, the user? It means that until the day Subversion grows this feature, you'll have to track merge information yourself. The best place to do this is in the commit log-message. As demonstrated in prior examples, it's recommended that your log-message mention a specific revision number (or range of revisions) that are being merged into your branch. Later on, you can run svn log to review which changes your branch already contains. This will allow you to carefully construct a subsequent svn merge command that won't be redundant with previously ported changes.
In the next section, we'll show some examples of this technique in action.
First, always remember to do your merge into a working copy that has no local edits and has been recently updated. If your working copy isn't “clean” in these ways, you can run into some headaches.
Assuming your working copy is tidy, merging isn't a particularly high-risk operation. If you get the merge wrong the first time, simply svn revert the changes and try again.
If you've merged into a working copy that already has local modifications, the changes applied by a merge will be mixed with your pre-existing ones, and running svn revert is no longer an option. The two sets of changes may be impossible to separate.
In cases like this, people take comfort in being able to
predict or examine merges before they happen. One simple
way to do that is to run svn diff with
the same arguments you plan to pass to svn
merge, as we already showed in our first example
of merging. Another method of previewing is to pass the
--dry-run
option to the merge
command:
$ svn merge --dry-run -c 344 http://svn.example.com/repos/calc/trunk U integer.c $ svn status # nothing printed, working copy is still unchanged.
The --dry-run
option doesn't actually
apply any local changes to the working copy. It only shows
status codes that would be printed in a
real merge. It's useful for getting a “high
level” preview of the potential merge, for those
times when running svn diff gives too
much detail.
Just like the svn update command, svn merge applies changes to your working copy. And therefore it's also capable of creating conflicts. The conflicts produced by svn merge, however, are sometimes different, and this section explains those differences.
To begin with, assume that your working copy has no local edits. When you svn update to a particular revision, the changes sent by the server will always apply “cleanly” to your working copy. The server produces the delta by comparing two trees: a virtual snapshot of your working copy, and the revision tree you're interested in. Because the left-hand side of the comparison is exactly equal to what you already have, the delta is guaranteed to correctly convert your working copy into the right-hand tree.
But svn merge has no such guarantees and can be much more chaotic: the user can ask the server to compare any two trees at all, even ones that are unrelated to the working copy! This means there's large potential for human error. Users will sometimes compare the wrong two trees, creating a delta that doesn't apply cleanly. svn merge will do its best to apply as much of the delta as possible, but some parts may be impossible. Just as the Unix patch command sometimes complains about “failed hunks”, svn merge will complain about “skipped targets”:
$ svn merge -r 1288:1351 http://svn.example.com/repos/branch U foo.c U bar.c Skipped missing target: 'baz.c' U glub.c C glorb.h $
In the previous example it might be the case that
baz.c
exists in both snapshots of the
branch being compared, and the resulting delta wants to
change the file's contents, but the file doesn't exist in
the working copy. Whatever the case, the
“skipped” message means that the user is most
likely comparing the wrong two trees; they're the classic
sign of user error. When this happens, it's easy to
recursively revert all the changes created by the merge
(svn revert --recursive), delete any
unversioned files or directories left behind after the
revert, and re-run svn merge with
different arguments.
Also notice that the previous example shows a conflict
happening on glorb.h
. We already
stated that the working copy has no local edits: how can a
conflict possibly happen? Again, because the user can use
svn merge to define and apply any old
delta to the working copy, that delta may contain textual
changes that don't cleanly apply to a working file, even if
the file has no local modifications.
Another small difference between svn
update and svn merge are the
names of the full-text files created when a conflict
happens. In the section called “Resolve Conflicts (Merging Others' Changes)”, we saw
that an update produces files named
filename.mine
,
filename.rOLDREV
, and
filename.rNEWREV
. When svn
merge produces a conflict, though, it creates
three files named filename.working
,
filename.left
, and
filename.right
. In this case, the
terms “left” and “right” are
describing which side of the double-tree comparison the file
came from. In any case, these differing names will help you
distinguish between conflicts that happened as a result of an
update versus ones that happened as a result of a
merge.
When conversing with a Subversion developer, you might very likely hear reference to the term ancestry. This word is used to describe the relationship between two objects in a repository: if they're related to each other, then one object is said to be an ancestor of the other.
For example, suppose you commit revision 100, which
includes a change to a file foo.c
.
Then foo.c@99
is an
“ancestor” of foo.c@100
.
On the other hand, suppose you commit the deletion of
foo.c
in revision 101, and then add a
new file by the same name in revision 102. In this case,
foo.c@99
and
foo.c@102
may appear to be related
(they have the same path), but in fact are completely
different objects in the repository. They share no history
or “ancestry”.
The reason for bringing this up is to point out an
important difference between svn diff and
svn merge. The former command ignores
ancestry, while the latter command is quite sensitive to it.
For example, if you asked svn diff to
compare revisions 99 and 102 of foo.c
,
you would see line-based diffs; the diff
command is blindly comparing two paths. But if you asked
svn merge to compare the same two objects,
it would notice that they're unrelated and first attempt to
delete the old file, then add the new file; the output would
indicate a deletion followed by an add:
D foo.c A foo.c
Most merges involve comparing trees that are ancestrally
related to one another, and therefore svn
merge defaults to this behavior. Occasionally,
however, you may want the merge
command
to compare two unrelated trees. For example, you may have
imported two source-code trees representing different vendor
releases of a software project (see the section called “Vendor branches”). If you asked
svn merge to compare the two trees, you'd
see the entire first tree being deleted, followed by an add
of the entire second tree! In these situations, you'll want
svn merge to do a path-based comparison
only, ignoring any relations between files and directories.
Add the --ignore-ancestry
option to your
merge command, and it will behave just like svn
diff. (And conversely, the
--notice-ancestry
option will cause
svn diff to behave like the
merge
command.)
A common desire is to refactor source code, especially in Java-based software projects. Files and directories are shuffled around and renamed, often causing great disruption to everyone working on the project. Sounds like a perfect case to use a branch, doesn't it? Just create a branch, shuffle things around, then merge the branch back to the trunk, right?
Alas, this scenario doesn't work so well right now, and is considered one of Subversion's current weak spots. The problem is that Subversion's update command isn't as robust as it should be, particularly when dealing with copy and move operations.
When you use svn copy to duplicate a file, the repository remembers where the new file came from, but it fails to transmit that information to the client which is running svn update or svn merge. Instead of telling the client, “Copy that file you already have to this new location”, it instead sends down an entirely new file. This can lead to problems, especially because the same thing happens with renamed files. A lesser-known fact about Subversion is that it lacks “true renames”—the svn move command is nothing more than an aggregation of svn copy and svn delete.
For example, suppose that while working on your private
branch, you rename integer.c
to whole.c
. Effectively you've created
a new file in your branch that is a copy of the original
file, and deleted the original file. Meanwhile, back
on trunk
, Sally has committed some
improvements to integer.c
. Now you
decide to merge your branch to the trunk:
$ cd calc/trunk $ svn merge -r 341:405 http://svn.example.com/repos/calc/branches/my-calc-branch D integer.c A whole.c
This doesn't look so bad at first glance, but it's also
probably not what you or Sally expected. The merge
operation has deleted the latest version
of integer.c
file (the one containing
Sally's latest changes), and blindly added your
new whole.c
file—which is a
duplicate of the older version
of integer.c
. The net effect is that
merging your “rename” to the branch has removed
Sally's recent changes from the latest revision!
This isn't true data-loss; Sally's changes are still in the repository's history, but it may not be immediately obvious that this has happened. The moral of this story is that until Subversion improves, be very careful about merging copies and renames from one branch to another.
There are many different uses for branching and svn merge, and this section describes the most common ones you're likely to run into.
To complete our running example, we'll move forward in time. Suppose several days have passed, and many changes have happened on both the trunk and your private branch. Suppose that you've finished working on your private branch; the feature or bug fix is finally complete, and now you want to merge all of your branch changes back into the trunk for others to enjoy.
So how do we use svn merge in this
scenario? Remember that this command compares two trees, and
applies the differences to a working copy. So to receive the
changes, you need to have a working copy of the trunk. We'll
assume that either you still have your original one lying
around (fully updated), or that you recently checked out a
fresh working copy of /calc/trunk
.
But which two trees should be compared? At first glance, the answer may seem obvious: just compare the latest trunk tree with your latest branch tree. But beware—this assumption is wrong, and has burned many a new user! Since svn merge operates like svn diff, comparing the latest trunk and branch trees will not merely describe the set of changes you made to your branch. Such a comparison shows too many changes: it would not only show the addition of your branch changes, but also the removal of trunk changes that never happened on your branch.
To express only the changes that happened on your branch,
you need to compare the initial state of your branch to its
final state. Using svn log on your branch,
you can see that your branch was created in revision 341. And
the final state of your branch is simply a matter of using the
HEAD
revision. That means you want to
compare revisions 341 and HEAD
of your
branch directory, and apply those differences to a working
copy of the trunk.
A nice way of finding the revision in which a branch was
created (the “base” of the branch) is to use the
--stop-on-copy
option to svn
log. The log subcommand will normally show every
change ever made to the branch, including tracing back
through the copy which created the branch. So normally,
you'll see history from the trunk as well. The
--stop-on-copy
will halt log output as soon
as svn log detects that its target was
copied or renamed.
So in our continuing example,
$ svn log -v --stop-on-copy \ http://svn.example.com/repos/calc/branches/my-calc-branch … ------------------------------------------------------------------------ r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines Changed paths: A /calc/branches/my-calc-branch (from /calc/trunk:340) $
As expected, the final revision printed by this command
is the revision in which my-calc-branch
was created by copying.
Here's the final merging procedure, then:
$ cd calc/trunk $ svn update At revision 405. $ svn merge -r 341:405 http://svn.example.com/repos/calc/branches/my-calc-branch U integer.c U button.c U Makefile $ svn status M integer.c M button.c M Makefile # ...examine the diffs, compile, test, etc... $ svn commit -m "Merged my-calc-branch changes r341:405 into the trunk." Sending integer.c Sending button.c Sending Makefile Transmitting file data ... Committed revision 406.
Again, notice that the commit log message very specifically mentions the range of changes that was merged into the trunk. Always remember to do this, because it's critical information you'll need later on.
For example, suppose you decide to keep working on your
branch for another week, in order to complete an enhancement
to your original feature or bug fix. The repository's
HEAD
revision is now 480, and you're ready
to do another merge from your private branch to the trunk.
But as discussed in the section called “Best Practices for Merging”, you
don't want to merge the changes you've already merged before;
you only want to merge everything “new” on your
branch since the last time you merged. The trick is to figure
out what's new.
The first step is to run svn log on the trunk, and look for a log message about the last time you merged from the branch:
$ cd calc/trunk $ svn log … ------------------------------------------------------------------------ r406 | user | 2004-02-08 11:17:26 -0600 (Sun, 08 Feb 2004) | 1 line Merged my-calc-branch changes r341:405 into the trunk. ------------------------------------------------------------------------ …
Aha! Since all branch-changes that happened between
revisions 341 and 405 were previously merged to the trunk as
revision 406, you now know that you want to merge only the
branch changes after that—by comparing revisions 406 and
HEAD
.
$ cd calc/trunk $ svn update At revision 480. # We notice that HEAD is currently 480, so we use it to do the merge: $ svn merge -r 406:480 http://svn.example.com/repos/calc/branches/my-calc-branch U integer.c U button.c U Makefile $ svn commit -m "Merged my-calc-branch changes r406:480 into the trunk." Sending integer.c Sending button.c Sending Makefile Transmitting file data ... Committed revision 481.
Now the trunk contains the complete second wave of changes made to the branch. At this point, you can either delete your branch (we'll discuss this later on), or continue working on your branch and repeat this procedure for subsequent merges.
Another common use for svn merge is to
roll back a change that has already been committed. Suppose
you're working away happily on a working copy of
/calc/trunk
, and you discover that the
change made way back in revision 303, which changed
integer.c
, is completely wrong. It never
should have been committed. You can use svn
merge to “undo” the change in your
working copy, and then commit the local modification to the
repository. All you need to do is to specify a
reverse difference. (You can do this by
specifying --revision 303:302
, or by an
equivalent --change -303
.)
$ svn merge -c -303 http://svn.example.com/repos/calc/trunk U integer.c $ svn status M integer.c $ svn diff … # verify that the change is removed … $ svn commit -m "Undoing change committed in r303." Sending integer.c Transmitting file data . Committed revision 350.
One way to think about a repository revision is as a
specific group of changes (some version control systems call
these changesets). By using the
-r
option, you can ask svn
merge to apply a changeset, or whole range of
changesets, to your working copy. In our case of undoing a
change, we're asking svn merge to apply
changeset #303 to our working copy
backwards.
Keep in mind that rolling back a change like this is just
like any other svn merge operation, so you
should use svn status and svn
diff to confirm that your work is in the state you
want it to be in, and then use svn commit
to send the final version to the repository. After
committing, this particular changeset is no longer reflected
in the HEAD
revision.
Again, you may be thinking: well, that really didn't undo
the commit, did it? The change still exists in revision 303.
If somebody checks out a version of the
calc
project between revisions 303 and
349, they'll still see the bad change, right?
Yes, that's true. When we talk about
“removing” a change, we're really talking about
removing it from HEAD
. The original change
still exists in the repository's history. For most
situations, this is good enough. Most people are only
interested in tracking the HEAD
of a
project anyway. There are special cases, however, where you
really might want to destroy all evidence of the commit.
(Perhaps somebody accidentally committed a confidential
document.) This isn't so easy, it turns out, because
Subversion was deliberately designed to never lose
information. Revisions are immutable trees which build upon
one another. Removing a revision from history would cause a
domino effect, creating chaos in all subsequent revisions and
possibly invalidating all working copies.
[23]
The great thing about version control systems is that
information is never lost. Even when you delete a file or
directory, it may be gone from the HEAD
revision, but the object still exists in earlier revisions.
One of the most common questions new users ask is, “How
do I get my old file or directory back?”.
The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you can think of every object in the repository as existing in a sort of two-dimensional coordinate system. The first coordinate is a particular revision tree, and the second coordinate is a path within that tree. So every version of your file or directory can be defined by a specific coordinate pair. (Remember the “peg revision” syntax—foo.c@224 —mentioned back in the section called “Peg and Operative Revisions”.)
First, you might need to use svn log to
discover the exact coordinate pair you wish to resurrect. A
good strategy is to run svn log
--verbose in a directory which used to contain your
deleted item. The --verbose (-v)
option shows a
list of all changed items in each revision; all you need to do
is find the revision in which you deleted the file or
directory. You can do this visually, or by using another tool
to examine the log output (via grep, or
perhaps via an incremental search in an editor).
$ cd parent-dir $ svn log -v … ------------------------------------------------------------------------ r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines Changed paths: D /calc/trunk/real.c M /calc/trunk/integer.c Added fast fourier transform functions to integer.c. Removed real.c because code now in double.c. …
In the example, we're assuming that you're looking for a
deleted file real.c
. By looking through
the logs of a parent directory, you've spotted that this file
was deleted in revision 808. Therefore, the last version of
the file to exist was in the revision right before that.
Conclusion: you want to resurrect the path
/calc/trunk/real.c
from revision
807.
That was the hard part—the research. Now that you know what you want to restore, you have two different choices.
One option is to use svn merge to apply
revision 808 “in reverse”. (We've already
discussed how to undo changes, see
the section called “Undoing Changes”.) This
would have the effect of re-adding real.c
as a local modification. The file would be scheduled for
addition, and after a commit, the file would again exist
in HEAD
.
In this particular example, however, this is probably not
the best strategy. Reverse-applying revision 808 would not
only schedule real.c
for addition, but
the log message indicates that it would also undo certain
changes to integer.c
, which you don't
want. Certainly, you could reverse-merge revision 808 and
then svn revert the local modifications to
integer.c
, but this technique doesn't
scale well. What if there were 90 files changed in revision
808?
A second, more targeted strategy is not to use svn merge at all, but rather the svn copy command. Simply copy the exact revision and path “coordinate pair” from the repository to your working copy:
$ svn copy -r 807 \ http://svn.example.com/repos/calc/trunk/real.c ./real.c $ svn status A + real.c $ svn commit -m "Resurrected real.c from revision 807, /calc/trunk/real.c." Adding real.c Transmitting file data . Committed revision 1390.
The plus sign in the status output indicates that the item
isn't merely scheduled for addition, but scheduled for
addition “with history”. Subversion remembers
where it was copied from. In the future, running svn
log on this file will traverse back through the
file's resurrection and through all the history it had prior
to revision 807. In other words, this new
real.c
isn't really new; it's a direct
descendant of the original, deleted file.
Although our example shows us resurrecting a file, note that these same techniques work just as well for resurrecting deleted directories.
Version control is most often used for software development, so here's a quick peek at two of the most common branching/merging patterns used by teams of programmers. If you're not using Subversion for software development, feel free to skip this section. If you're a software developer using version control for the first time, pay close attention, as these patterns are often considered best practices by experienced folk. These processes aren't specific to Subversion; they're applicable to any version control system. Still, it may help to see them described in Subversion terms.
Most software has a typical lifecycle: code, test, release, repeat. There are two problems with this process. First, developers need to keep writing new features while quality-assurance teams take time to test supposedly-stable versions of the software. New work cannot halt while the software is tested. Second, the team almost always needs to support older, released versions of software; if a bug is discovered in the latest code, it most likely exists in released versions as well, and customers will want to get that bugfix without having to wait for a major new release.
Here's where version control can help. The typical procedure looks like this:
Developers commit all new work to the
trunk.
Day-to-day changes are committed to
/trunk
: new features, bugfixes, and
so on.
The trunk is copied to a
“release” branch.
When the team thinks the software is ready for release
(say, a 1.0 release), then /trunk
might be copied to
/branches/1.0
.
Teams continue to work in parallel.
One team begins rigorous testing of the release branch,
while another team continues new work (say, for version
2.0) on /trunk
. If bugs are
discovered in either location, fixes are ported back and
forth as necessary. At some point, however, even that
process stops. The branch is “frozen” for
final testing right before a release.
The branch is tagged and released.
When testing is complete,
/branches/1.0
is copied to
/tags/1.0.0
as a reference
snapshot. The tag is packaged and released to
customers.
The branch is maintained over time.
While work continues on /trunk
for
version 2.0, bugfixes continue to be ported from
/trunk
to
/branches/1.0
. When enough
bugfixes have accumulated, management may decide to do a
1.0.1 release: /branches/1.0
is
copied to /tags/1.0.1
, and the tag
is packaged and released.
This entire process repeats as the software matures: when the 2.0 work is complete, a new 2.0 release branch is created, tested, tagged, and eventually released. After some years, the repository ends up with a number of release branches in “maintenance” mode, and a number of tags representing final shipped versions.
A feature branch is the sort of
branch that's been the dominant example in this chapter, the
one you've been working on while Sally continues to work on
/trunk
. It's a temporary branch
created to work on a complex change without interfering with
the stability of /trunk
. Unlike
release branches (which may need to be supported forever),
feature branches are born, used for a while, merged back to
the trunk, then ultimately deleted. They have a finite span
of usefulness.
Again, project policies vary widely concerning exactly
when it's appropriate to create a feature branch. Some
projects never use feature branches at all: commits to
/trunk
are a free-for-all. The
advantage to this system is that it's simple—nobody
needs to learn about branching or merging. The disadvantage
is that the trunk code is often unstable or unusable. Other
projects use branches to an extreme: no change is
ever committed to the trunk directly.
Even the most trivial changes are created on a short-lived
branch, carefully reviewed and merged to the trunk. Then
the branch is deleted. This system guarantees an
exceptionally stable and usable trunk at all times, but at
the cost of tremendous process overhead.
Most projects take a middle-of-the-road approach. They
commonly insist that /trunk
compile and
pass regression tests at all times. A feature branch is
only required when a change requires a large number of
destabilizing commits. A good rule of thumb is to ask this
question: if the developer worked for days in isolation and
then committed the large change all at once (so that
/trunk
were never destabilized), would
it be too large a change to review? If the answer to that
question is “yes”, then the change should be
developed on a feature branch. As the developer commits
incremental changes to the branch, they can be easily
reviewed by peers.
Finally, there's the issue of how to best keep a feature branch in “sync” with the trunk as work progresses. As we mentioned earlier, there's a great risk to working on a branch for weeks or months; trunk changes may continue to pour in, to the point where the two lines of development differ so greatly that it may become a nightmare trying to merge the branch back to the trunk.
This situation is best avoided by regularly merging trunk changes to the branch. Make up a policy: once a week, merge the last week's worth of trunk changes to the branch. Take care when doing this; the merging needs to be hand-tracked to avoid the problem of repeated merges (as described in the section called “Tracking Merges Manually”). You'll need to write careful log messages detailing exactly which revision ranges have been merged already (as demonstrated in the section called “Merging a Whole Branch to Another”). It may sound intimidating, but it's actually pretty easy to do.
At some point, you'll be ready to merge the “synchronized” feature branch back to the trunk. To do this, begin by doing a final merge of the latest trunk changes to the branch. When that's done, the latest versions of branch and trunk will be absolutely identical except for your branch changes. So in this special case, you would merge by comparing the branch with the trunk:
$ cd trunk-working-copy $ svn update At revision 1910. $ svn merge http://svn.example.com/repos/calc/trunk@1910 \ http://svn.example.com/repos/calc/branches/mybranch@1910 U real.c U integer.c A newdirectory A newdirectory/newfile …
By comparing the HEAD
revision of the
trunk with the HEAD
revision of the
branch, you're defining a delta that describes only the
changes you made to the branch; both lines of development
already have all of the trunk changes.
Another way of thinking about this pattern is that your weekly sync of trunk to branch is analogous to running svn update in a working copy, while the final merge step is analogous to running svn commit from a working copy. After all, what else is a working copy but a very shallow private branch? It's a branch that's only capable of storing one change at a time.
The svn switch command transforms an
existing working copy to reflect a different branch. While this
command isn't strictly necessary for working with branches, it
provides a nice shortcut. In our earlier example,
after creating your private branch, you checked out a fresh
working copy of the new repository directory. Instead, you can
simply ask Subversion to change your working copy of
/calc/trunk
to mirror the new branch
location:
$ cd calc $ svn info | grep URL URL: http://svn.example.com/repos/calc/trunk $ svn switch http://svn.example.com/repos/calc/branches/my-calc-branch U integer.c U button.c U Makefile Updated to revision 341. $ svn info | grep URL URL: http://svn.example.com/repos/calc/branches/my-calc-branch
After “switching” to the branch, your working copy is no different than what you would get from doing a fresh checkout of the directory. And it's usually more efficient to use this command, because often branches only differ by a small degree. The server sends only the minimal set of changes necessary to make your working copy reflect the branch directory.
The svn switch command also takes a
--revision
(-r
) option, so you
need not always move your working copy to the
HEAD
of the branch.
Of course, most projects are more complicated than our
calc
example, containing multiple
subdirectories. Subversion users often follow a specific
algorithm when using branches:
Copy the project's entire “trunk” to a new branch directory.
Switch only part of the trunk working copy to mirror the branch.
In other words, if a user knows that the branch-work only needs to happen on a specific subdirectory, they use svn switch to move only that subdirectory to the branch. (Or sometimes users will switch just a single working file to the branch!) That way, they can continue to receive normal “trunk” updates to most of their working copy, but the switched portions will remain immune (unless someone commits a change to their branch). This feature adds a whole new dimension to the concept of a “mixed working copy”—not only can working copies contain a mixture of working revisions, but a mixture of repository locations as well.
If your working copy contains a number of switched subtrees from different repository locations, it continues to function as normal. When you update, you'll receive patches to each subtree as appropriate. When you commit, your local changes will still be applied as a single, atomic change to the repository.
Note that while it's okay for your working copy to reflect a mixture of repository locations, these locations must all be within the same repository. Subversion repositories aren't yet able to communicate with one another; that's a feature planned for the future. [24]
Because svn switch is essentially a variant of svn update, it shares the same behaviors; any local modifications in your working copy are preserved when new data arrives from the repository. This allows you to perform all sorts of clever tricks.
For example, suppose you have a working copy of
/calc/trunk
and make a number of changes to
it. Then you suddenly realize that you meant to make the
changes to a branch instead. No problem! When you svn
switch your working copy to the branch, the local
changes will remain. You can then test and commit them to the
branch.
Another common version control concept is a tag. A tag is just a “snapshot” of a project in time. In Subversion, this idea already seems to be everywhere. Each repository revision is exactly that—a snapshot of the filesystem after each commit.
However, people often want to give more human-friendly names
to tags, like release-1.0
. And they want to
make snapshots of smaller subdirectories of the filesystem.
After all, it's not so easy to remember that release-1.0 of a
piece of software is a particular subdirectory of revision
4822.
Once again, svn copy comes to the
rescue. If you want to create a snapshot of
/calc/trunk
exactly as it looks in the
HEAD
revision, then make a copy of it:
$ svn copy http://svn.example.com/repos/calc/trunk \ http://svn.example.com/repos/calc/tags/release-1.0 \ -m "Tagging the 1.0 release of the 'calc' project." Committed revision 351.
This example assumes that a
/calc/tags
directory already exists. (If
it doesn't, you can create it using svn
mkdir.) After the copy completes, the new
release-1.0
directory is forever a
snapshot of how the project looked in the
HEAD
revision at the time you made the
copy. Of course you might want to be more precise about
exactly which revision you copy, in case somebody else may
have committed changes to the project when you weren't
looking. So if you know that revision 350 of
/calc/trunk
is exactly the snapshot you
want, you can specify it by passing -r 350
to
the svn copy command.
But wait a moment: isn't this tag-creation procedure the same procedure we used to create a branch? Yes, in fact, it is. In Subversion, there's no difference between a tag and a branch. Both are just ordinary directories that are created by copying. Just as with branches, the only reason a copied directory is a “tag” is because humans have decided to treat it that way: as long as nobody ever commits to the directory, it forever remains a snapshot. If people start committing to it, it becomes a branch.
If you are administering a repository, there are two approaches you can take to managing tags. The first approach is “hands off”: as a matter of project policy, decide where your tags will live, and make sure all users know how to treat the directories they copy in there. (That is, make sure they know not to commit to them.) The second approach is more paranoid: you can use one of the access-control scripts provided with Subversion to prevent anyone from doing anything but creating new copies in the tags-area (See Chapter 6, Server Configuration.) The paranoid approach, however, isn't usually necessary. If a user accidentally commits a change to a tag-directory, you can simply undo the change as discussed in the previous section. This is version control, after all.
Sometimes you may want your “snapshot” to be more complicated than a single directory at a single revision.
For example, pretend your project is much larger than our
calc
example: suppose it contains a
number of subdirectories and many more files. In the course
of your work, you may decide that you need to create a working
copy that is designed to have specific features and bug fixes.
You can accomplish this by selectively backdating files or
directories to particular revisions (using svn update
-r liberally), or by switching files and directories
to particular branches (making use of svn
switch). When you're done, your working copy is a
hodgepodge of repository locations from different revisions.
But after testing, you know it's the precise combination of
data you need.
Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make a snapshot of your exact working copy arrangement and store it in the repository. Luckily, svn copy actually has four different uses (which you can read about in Chapter 9, Subversion Complete Reference), including the ability to copy a working-copy tree to the repository:
$ ls my-working-copy/ $ svn copy my-working-copy http://svn.example.com/repos/calc/tags/mytag Committed revision 352.
Now there is a new directory in the repository,
/calc/tags/mytag
, which is an exact
snapshot of your working copy—mixed revisions, URLs,
and all.
Other users have found interesting uses for this feature. Sometimes there are situations where you have a bunch of local changes made to your working copy, and you'd like a collaborator to see them. Instead of running svn diff and sending a patch file (which won't capture tree changes, symlink changes or changes in properties), you can instead use svn copy to “upload” your working copy to a private area of the repository. Your collaborator can then either check out a verbatim copy of your working copy, or use svn merge to receive your exact changes.
While this is a nice method for uploading a quick snapshot of your working copy, note that this is not a good way to initially create a branch. Branch creation should be an event onto itself, and this method conflates the creation of a branch with extra changes to files, all within a single revision. This makes it very difficult (later on) to identify a single revision number as a branch point.
Have you ever found yourself making some complex edits
(in your /trunk
working copy) and
suddenly realized, “hey, these changes ought to be in
their own branch?” A great technique to do this can
be summarized in two steps:
$ svn copy http://svn.example.com/repos/calc/trunk \ http://svn.example.com/repos/calc/branches/newbranch Committed revision 353. $ svn switch http://svn.example.com/repos/calc/branches/newbranch At revision 353.
The svn switch command, like svn update, preserves your local edits. At this point, your working copy is now a reflection of the newly created branch, and your next svn commit invocation will send your changes there.
You may have noticed by now that Subversion is extremely flexible. Because it implements branches and tags with the same underlying mechanism (directory copies), and because branches and tags appear in normal filesystem space, many people find Subversion intimidating. It's almost too flexible. In this section, we'll offer some suggestions for arranging and managing your data over time.
There are some standard, recommended ways to organize a
repository. Most people create a trunk
directory to hold the “main line” of development,
a branches
directory to contain branch
copies, and a tags
directory to contain
tag copies. If a repository holds only one project, then
often people create these top-level directories:
/trunk /branches /tags
If a repository contains multiple projects, admins typically index their layout by project (see the section called “Planning Your Repository Organization” to read more about “project roots”):
/paint/trunk /paint/branches /paint/tags /calc/trunk /calc/branches /calc/tags
Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever works best for you or your team. Remember that whatever you choose, it's not a permanent commitment. You can reorganize your repository at any time. Because branches and tags are ordinary directories, the svn move command can move or rename them however you wish. Switching from one layout to another is just a matter of issuing a series of server-side moves; if you don't like the way things are organized in the repository, just juggle the directories around.
Remember, though, that while moving directories may be easy to do, you need to be considerate of your users as well. Your juggling can be disorienting to users with existing working copies. If a user has a working copy of a particular repository directory, your svn move operation might remove the path from the latest revision. When the user next runs svn update, she will be told that her working copy represents a path that no longer exists, and the user will be forced to svn switch to the new location.
Another nice feature of Subversion's model is that
branches and tags can have finite lifetimes, just like any
other versioned item. For example, suppose you eventually
finish all your work on your personal branch of the
calc
project. After merging all of your
changes back into /calc/trunk
, there's
no need for your private branch directory to stick around
anymore:
$ svn delete http://svn.example.com/repos/calc/branches/my-calc-branch \ -m "Removing obsolete branch of calc project." Committed revision 375.
And now your branch is gone. Of course it's not really
gone: the directory is simply missing from the
HEAD
revision, no longer distracting
anyone. If you use svn checkout,
svn switch, or svn list
to examine an earlier revision, you'll still be able to see
your old branch.
If browsing your deleted directory isn't enough, you can
always bring it back. Resurrecting data is very easy in
Subversion. If there's a deleted directory (or file) that
you'd like to bring back into HEAD
, simply
use svn copy -r to copy it from the old
revision:
$ svn copy -r 374 http://svn.example.com/repos/calc/branches/my-calc-branch \ http://svn.example.com/repos/calc/branches/my-calc-branch Committed revision 376.
In our example, your personal branch had a relatively
short lifetime: you may have created it to fix a bug or
implement a new feature. When your task is done, so is the
branch. In software development, though, it's also common to
have two “main” branches running side-by-side for
very long periods. For example, suppose it's time to release
a stable version of the calc
project to the
public, and you know it's going to take a couple of months to
shake bugs out of the software. You don't want people to add
new features to the project, but you don't want to tell all
developers to stop programming either. So instead, you create
a “stable” branch of the software that won't
change much:
$ svn copy http://svn.example.com/repos/calc/trunk \ http://svn.example.com/repos/calc/branches/stable-1.0 \ -m "Creating stable branch of calc project." Committed revision 377.
And now developers are free to continue adding
cutting-edge (or experimental) features to
/calc/trunk
, and you can declare a
project policy that only bug fixes are to be committed to
/calc/branches/stable-1.0
. That is, as
people continue to work on the trunk, a human selectively
ports bug fixes over to the stable branch. Even after the
stable branch has shipped, you'll probably continue to
maintain the branch for a long time—that is, as long
as you continue to support that release for customers.
As is especially the case when developing software, the data that you maintain under version control is often closely related to, or perhaps dependent upon, someone else's data. Generally, the needs of your project will dictate that you stay as up-to-date as possible with the data provided by that external entity without sacrificing the stability of your own project. This scenario plays itself out all the time—anywhere that the information generated by one group of people has a direct effect on that which is generated by another group.
For example, software developers might be working on an application which makes use of a third-party library. Subversion has just such a relationship with the Apache Portable Runtime library (see the section called “The Apache Portable Runtime Library”). The Subversion source code depends on the APR library for all its portability needs. In earlier stages of Subversion's development, the project closely tracked APR's changing API, always sticking to the “bleeding edge” of the library's code churn. Now that both APR and Subversion have matured, Subversion attempts to synchronize with APR's library API only at well-tested, stable release points.
Now, if your project depends on someone else's information, there are several ways that you could attempt to synchronize that information with your own. Most painfully, you could issue oral or written instructions to all the contributors of your project, telling them to make sure that they have the specific versions of that third-party information that your project needs. If the third-party information is maintained in a Subversion repository, you could also use Subversion's externals definitions to effectively “pin down” specific versions of that information to some location in your own working copy directory (see the section called “Externals Definitions”).
But sometimes you want to maintain custom modifications to third-party data in your own version control system. Returning to the software development example, programmers might need to make modifications to that third-party library for their own purposes. These modifications might include new functionality or bug fixes, maintained internally only until they become part of an official release of the third-party library. Or the changes might never be relayed back to the library maintainers, existing solely as custom tweaks to make the library further suit the needs of the software developers.
Now you face an interesting situation. Your project could house its custom modifications to the third-party data in some disjointed fashion, such as using patch files or full-fledged alternate versions of files and directories. But these quickly become maintenance headaches, requiring some mechanism by which to apply your custom changes to the third-party data, and necessitating regeneration of those changes with each successive version of the third-party data that you track.
The solution to this problem is to use vendor branches. A vendor branch is a directory tree in your own version control system that contains information provided by a third-party entity, or vendor. Each version of the vendor's data that you decide to absorb into your project is called a vendor drop.
Vendor branches provide two benefits. First, by storing the currently supported vendor drop in your own version control system, the members of your project never need to question whether they have the right version of the vendor's data. They simply receive that correct version as part of their regular working copy updates. Secondly, because the data lives in your own Subversion repository, you can store your custom changes to it in-place—you have no more need of an automated (or worse, manual) method for swapping in your customizations.
Managing vendor branches generally works like this. You
create a top-level directory (such as
/vendor
) to hold the vendor branches.
Then you import the third party code into a subdirectory of
that top-level directory. You then copy that subdirectory
into your main development branch (for example,
/trunk
) at the appropriate location. You
always make your local changes in the main development branch.
With each new release of the code you are tracking you bring
it into the vendor branch and merge the changes into
/trunk
, resolving whatever conflicts
occur between your local changes and the upstream
changes.
Perhaps an example will help to clarify this algorithm.
We'll use a scenario where your development team is creating a
calculator program that links against a third-party complex
number arithmetic library, libcomplex. We'll begin with the
initial creation of the vendor branch, and the import of the
first vendor drop. We'll call our vendor branch directory
libcomplex
, and our code drops will go
into a subdirectory of our vendor branch called
current
. And since svn
import creates all the intermediate parent
directories it needs, we can actually accomplish both of these
steps with a single command.
$ svn import /path/to/libcomplex-1.0 \ http://svn.example.com/repos/vendor/libcomplex/current \ -m 'importing initial 1.0 vendor drop' …
We now have the current version of the libcomplex source
code in /vendor/libcomplex/current
. Now,
we tag that version (see the section called “Tags”)
and then copy it into the main development branch. Our copy
will create a new directory called
libcomplex
in our existing
calc
project directory. It is in this
copied version of the vendor data that we will make our
customizations.
$ svn copy http://svn.example.com/repos/vendor/libcomplex/current \ http://svn.example.com/repos/vendor/libcomplex/1.0 \ -m 'tagging libcomplex-1.0' … $ svn copy http://svn.example.com/repos/vendor/libcomplex/1.0 \ http://svn.example.com/repos/calc/libcomplex \ -m 'bringing libcomplex-1.0 into the main branch' …
We check out our project's main branch—which now includes a copy of the first vendor drop—and we get to work customizing the libcomplex code. Before we know it, our modified version of libcomplex is now completely integrated into our calculator program. [25]
A few weeks later, the developers of libcomplex release a new version of their library—version 1.1—which contains some features and functionality that we really want. We'd like to upgrade to this new version, but without losing the customizations we made to the existing version. What we essentially would like to do is to replace our current baseline version of libcomplex 1.0 with a copy of libcomplex 1.1, and then re-apply the custom modifications we previously made to that library to the new version. But we actually approach the problem from the other direction, applying the changes made to libcomplex between versions 1.0 and 1.1 to our modified copy of it.
To perform this upgrade, we check out a copy of our vendor
branch, and replace the code in the
current
directory with the new libcomplex
1.1 source code. We quite literally copy new files on top of
existing files, perhaps exploding the libcomplex 1.1 release
tarball atop our existing files and directories. The goal
here is to make our current
directory
contain only the libcomplex 1.1 code, and to ensure that all
that code is under version control. Oh, and we want to do
this with as little version control history disturbance as
possible.
After replacing the 1.0 code with 1.1 code, svn
status will show files with local modifications as
well as, perhaps, some unversioned or missing files. If we
did what we were supposed to do, the unversioned files are
only those new files introduced in the 1.1 release of
libcomplex—we run svn add on those to
get them under version control. The missing files are files
that were in 1.0 but not in 1.1, and on those paths we run
svn delete. Finally, once our
current
working copy contains only the
libcomplex 1.1 code, we commit the changes we made to get it
looking that way.
Our current
branch now contains the
new vendor drop. We tag the new version (in the same way we
previously tagged the version 1.0 vendor drop), and then merge
the differences between the tag of the previous version and
the new current version into our main development
branch.
$ cd working-copies/calc $ svn merge http://svn.example.com/repos/vendor/libcomplex/1.0 \ http://svn.example.com/repos/vendor/libcomplex/current \ libcomplex … # resolve all the conflicts between their changes and our changes $ svn commit -m 'merging libcomplex-1.1 into the main branch' …
In the trivial use case, the new version of our third-party tool would look, from a files-and-directories point of view, just like the previous version. None of the libcomplex source files would have been deleted, renamed or moved to different locations—the new version would contain only textual modifications against the previous one. In a perfect world, our modifications would apply cleanly to the new version of the library, with absolutely no complications or conflicts.
But things aren't always that simple, and in fact it is quite common for source files to get moved around between releases of software. This complicates the process of ensuring that our modifications are still valid for the new version of code, and can quickly degrade into a situation where we have to manually recreate our customizations in the new version. Once Subversion knows about the history of a given source file—including all its previous locations—the process of merging in the new version of the library is pretty simple. But we are responsible for telling Subversion how the source file layout changed from vendor drop to vendor drop.
Vendor drops that contain more than a few deletes, additions and moves complicate the process of upgrading to each successive version of the third-party data. So Subversion supplies the svn_load_dirs.pl script to assist with this process. This script automates the importing steps we mentioned in the general vendor branch management procedure to make sure that mistakes are minimized. You will still be responsible for using the merge commands to merge the new versions of the third-party data into your main development branch, but svn_load_dirs.pl can help you more quickly and easily arrive at that stage.
In short, svn_load_dirs.pl is an enhancement to svn import that has several important characteristics:
It can be run at any point in time to bring an existing directory in the repository to exactly match an external directory, performing all the necessary adds and deletes, and optionally performing moves, too.
It takes care of complicated series of operations between which Subversion requires an intermediate commit—such as before renaming a file or directory twice.
It will optionally tag the newly imported directory.
It will optionally add arbitrary properties to files and directories that match a regular expression.
svn_load_dirs.pl takes three mandatory arguments. The first argument is the URL to the base Subversion directory to work in. This argument is followed by the URL—relative to the first argument—into which the current vendor drop will be imported. Finally, the third argument is the local directory to import. Using our previous example, a typical run of svn_load_dirs.pl might look like:
$ svn_load_dirs.pl http://svn.example.com/repos/vendor/libcomplex \ current \ /path/to/libcomplex-1.1 …
You can indicate that you'd like
svn_load_dirs.pl to tag the new vendor drop
by passing the -t
command-line option and
specifying a tag name. This tag is another URL relative to
the first program argument.
$ svn_load_dirs.pl -t libcomplex-1.1 \ http://svn.example.com/repos/vendor/libcomplex \ current \ /path/to/libcomplex-1.1 …
When you run svn_load_dirs.pl, it
examines the contents of your existing “current”
vendor drop, and compares them with the proposed new vendor
drop. In the trivial case, there will be no files that are in
one version and not the other, and the script will perform the
new import without incident. If, however, there are
discrepancies in the file layouts between versions,
svn_load_dirs.pl will ask you how
to resolve those differences. For example, you
will have the opportunity to tell the script that you know
that the file math.c
in version 1.0 of
libcomplex was renamed to arithmetic.c
in
libcomplex 1.1. Any discrepancies not explained by moves
are treated as regular additions and deletions.
The script also accepts a separate configuration file for
setting properties on files and directories matching a regular
expression that are added to the
repository. This configuration file is specified to
svn_load_dirs.pl using the
-p
command-line option. Each line of the
configuration file is a whitespace-delimited set of two or
four values: a Perl-style regular expression to match the
added path against, a control keyword (either
break
or cont
), and then
optionally a property name and value.
\.png$ break svn:mime-type image/png \.jpe?g$ break svn:mime-type image/jpeg \.m3u$ cont svn:mime-type audio/x-mpegurl \.m3u$ break svn:eol-style LF .* break svn:eol-style native
For each added path, the configured property changes whose
regular expression matches the path are applied in order,
unless the control specification is break
(which means that no more property changes should be applied
to that path). If the control specification is
cont
—an abbreviation for
continue
—then matching will continue
with the next line of the configuration file.
Any whitespace in the regular expression, property name,
or property value must be surrounded by either single or
double quote characters. You can escape quote characters that
are not used for wrapping whitespace by preceding them with a
backslash (\
) character. The backslash
escapes only quotes when parsing the configuration file, so do
not protect any other characters beyond what is necessary for
the regular expression.
We've covered a lot of ground in this chapter. We've discussed the concepts of tags and branches, and demonstrated how Subversion implements these concepts by copying directories with the svn copy command. We've shown how to use svn merge to copy changes from one branch to another, or roll back bad changes. We've gone over the use of svn switch to create mixed-location working copies. And we've talked about how one might manage the organization and lifetimes of branches in a repository.
Remember the Subversion mantra: branches and tags are cheap. So use them liberally! At the same time, don't forget to use good merging habits. Cheap copies are only useful when you're careful about tracking your merging actions.
[21] Subversion does not support copying between different repositories. When using URLs with svn copy or svn move, you can only copy items within the same repository.
[22] However, at the time of writing, this feature is being worked on!
[23] The Subversion project has plans, however, to someday implement a command that would accomplish the task of permanently deleting information. In the meantime, see the section called “svndumpfilter” for a possible workaround.
[24] You can, however, use svn
switch with the --relocate
option
if the URL of your server changes and you don't want to
abandon an existing working copy. See svn switch for more information and an
example.
[25] And entirely bug-free, of course!
Table of Contents
The Subversion repository is the central storehouse of all your versioned data. As such, it becomes an obvious candidate for all the love and attention an administrator can offer. While the repository is generally a low-maintenance item, it is important to understand how to properly configure and care for it so that potential problems are avoided, and actual problems are safely resolved.
In this chapter, we'll discuss how to create and configure a Subversion repository. We'll also talk about repository maintenance, providing examples of how and when to use the svnlook and svnadmin tools provided with Subversion. We'll address some common questions and mistakes, and give some suggestions on how to arrange the data in the repository.
If you plan to access a Subversion repository only in the role of a user whose data is under version control (that is, via a Subversion client), you can skip this chapter altogether. However, if you are, or wish to become, a Subversion repository administrator, [26] this chapter is for you.
Before jumping into the broader topic of repository administration, let's further define what a repository is. How does it look? How does it feel? Does it take its tea hot or iced, sweetened, and with lemon? As an administrator, you'll be expected to understand the composition of a repository both from a literal, OS-level perspective—how a repository looks and acts with respect to non-Subversion tools—and from a logical perspective—dealing with how data is represented inside the repository.
Seen through the eyes of a typical file browser application (such as the Windows Explorer) or command-line based filesystem navigation tools, the Subversion repository is just another directory full of stuff. There are some subdirectories with human-readable configuration files in them, some subdirectories with some not-so-human-readable data files, and so on. As in other areas of the Subversion design, modularity is given high regard, and hierarchical organization is preferred to cluttered chaos. So a shallow glance into a typical repository from a nuts-and-bolts perspective is sufficient to reveal the basic components of the repository:
$ ls repos conf/ dav/ db/ format hooks/ locks/ README.txt
Here's a quick fly-by overview of what exactly you're seeing in this directory listing. (Don't get bogged down in the terminology—detailed coverage of these components exists elsewhere in this and other chapters.)
A directory containing repository configuration files.
A directory provided to mod_dav_svn for its private housekeeping data.
The data store for all of your versioned data.
A file that contains a single integer that indicates the version number of the repository layout.
A directory full of hook script templates (and hook scripts themselves, once you've installed some).
A directory for Subversion's repository lock files, used for tracking accessors to the repository.
A file whose contents merely inform its readers that they are looking at a Subversion repository.
Of course, when accessed via the Subversion libraries, this otherwise unremarkable collection of files and directories suddenly becomes an implementation of a virtual, versioned filesystem, complete with customizable event triggers. This filesystem has its own notions of directories and files, very similar to the notions of such things held by real filesystems (such as NTFS, FAT32, ext3, and so on). But this is a special filesystem—it hangs these directories and files from revisions, keeping all the changes you've ever made to them safely stored and forever accessible. This is where the entirety of your versioned data lives.
Due largely to the simplicity of the overall design of the Subversion repository and the technologies on which it relies, creating and configuring a repository are fairly straightforward tasks. There are a few preliminary decisions you'll want to make, but the actual work involved in any given setup of a Subversion repository is pretty straightforward, tending towards mindless repetition if you find yourself setting up multiples of these things.
Some things you'll want to consider up front, though, are:
What data do you expect to live in your repository (or repositories), and how will that data be organized?
Where will your repository live, and how will it be accessed?
What types of access control and repository event reporting do you need?
Which of the available types of data store do you want to use?
In this section, we'll try to help you answer those questions.
While Subversion allows you to move around versioned files and directories without any loss of information, and even provides ways of moving whole sets of versioned history from one repository to another, doing so can greatly disrupt the workflow of those who access the repository often and come to expect things to be at certain locations. So before creating a new repository, try to peer into the future a bit; plan ahead before placing your data under version control. By conscientiously “laying out” your repository or repositories and their versioned contents ahead of time, you can prevent many future headaches.
Let's assume that as repository administrator, you will be responsible for supporting the version control system for several projects. Your first decision is whether to use a single repository for multiple projects, or to give each project its own repository, or some compromise of these two.
There are benefits to using a single repository for multiple projects, most obviously the lack of duplicated maintenance. A single repository means that there is one set of hook programs, one thing to routinely backup, one thing to dump and load if Subversion releases an incompatible new version, and so on. Also, you can move data between projects easily, and without losing any historical versioning information.
The downside of using a single repository is that different projects may have different requirements in terms of the repository event triggers, such as needing to send commit notification emails to different mailing lists, or having different definitions about what does and does not constitute a legitimate commit. These aren't insurmountable problems, of course—it just means that all of your hook scripts have to be sensitive to the layout of your repository rather than assuming that the whole repository is associated with a single group of people. Also, remember that Subversion uses repository-global revision numbers. While those numbers don't have any particular magical powers, some folks still don't like the fact that even though no changes have been made to their project lately, the youngest revision number for the repository keeps climbing because other projects are actively adding new revisions. [27]
A middle-ground approach can be taken, too. For example, projects can be grouped by how well they relate to each other. You might have a few repositories with a handful of projects in each repository. That way, projects that are likely to want to share data can do so easily, and as new revisions are added to the repository, at least the developers know that those new revisions are at least remotely related to everyone who uses that repository.
After deciding how to organize your projects with respect
to repositories, you'll probably want to think about directory
hierarchies within the repositories themselves. Because
Subversion uses regular directory copies for branching and
tagging (see Chapter 4, Branching and Merging), the
Subversion community recommends that you choose a repository
location for each project
root—the “top-most” directory
which contains data related to that project—and then
create three subdirectories beneath that root:
trunk
, meaning the directory under which
the main project development occurs;
branches
, which is a directory in which
to create various named branches of the main development line;
tags
, which is a collection of tree
snapshots that are created, and perhaps destroyed, but never
changed.
[28]
For example, your repository might look like:
/ calc/ trunk/ tags/ branches/ calendar/ trunk/ tags/ branches/ spreadsheet/ trunk/ tags/ branches/ …
Note that it doesn't matter where in your repository each project root is. If you have only one project per repository, the logical place to put each project root is at the root of that project's respective repository. If you have multiple projects, you might want to arrange them in groups inside the repository, perhaps putting projects with similar goals or shared code in the same subdirectory, or maybe just grouping them alphabetically. Such an arrangement might look like:
/ utils/ calc/ trunk/ tags/ branches/ calendar/ trunk/ tags/ branches/ … office/ spreadsheet/ trunk/ tags/ branches/ …
Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a particular layout—in its eyes, a directory is a directory is a directory. Ultimately, you should choose the repository arrangement that meets the needs of the people who work on the projects that live there.
In the name of full disclosure, though, we'll mention
another very common layout. In this layout, the
trunk
, tags
, and
branches
directories live in the root
directory of your repository, and your projects are in
subdirectories beneath those, like:
/ trunk/ calc/ calendar/ spreadsheet/ … tags/ calc/ calendar/ spreadsheet/ … branches/ calc/ calendar/ spreadsheet/ …
There's nothing particularly incorrect about such a layout, but it may or may not seem as intuitive for your users. Especially in large, multi-project situations with many users, those users may tend to be familiar with only one or two of the projects in the repository. But the projects-as-branch-siblings tends to de-emphasize project individuality and focus on the entire set of projects as a single entity. That's a social issue though. We like our originally suggested arrangement for purely practical reasons—it's easier to ask about (or modify, or migrate elsewhere) the entire history of a single project when there's a single repository path that holds the entire history—past, present, tagged, and branched—for that project and that project alone.
Before creating your Subversion repository, an obvious question you'll need to answer is where the thing is going to live. This is strongly connected to a myriad of other questions involving how the repository will be accessed (via a Subversion server or directly), by whom (users behind your corporate firewall or the whole world out on the open Internet), what other services you'll be providing around Subversion (repository browsing interfaces, e-mail based commit notification, etc.), your data backup strategy, and so on.
We cover server choice and configuration in Chapter 6, Server Configuration, but the point we'd like to briefly make here is simply that the answers to some of these other questions might have implications that force your hand when deciding where your repository will live. For example, certain deployment scenarios might require accessing the repository via a remote filesystem from multiple computers, in which case (as you'll read in the next section) your choice of a repository back-end data store turns out not to be a choice at all because only one of the available back-ends will work in this scenario.
Addressing each possible way to deploy Subversion is both impossible, and outside the scope of this book. We simply encourage you to evaluate your options using these pages and other sources as your reference material, and plan ahead.
As of version 1.1, Subversion provides two options for the type of underlying data store—often referred to as “the back-end” or, somewhat confusingly, “the (versioned) filesystem”—that each repository uses. One type of data store keeps everything in a Berkeley DB (or BDB) database environment; repositories that use this type are often referred to as being “BDB-backed”. The other type stores data in ordinary flat files, using a custom format. Subversion developers have adopted the habit of referring to this latter data storage mechanism as FSFS [29] —a versioned filesystem implementation that uses the native OS filesystem directly—rather than via a database library or some other abstraction layer—to store data.
Table 5.1, “Repository Data Store Comparison” gives a comparative overview of Berkeley DB and FSFS repositories.
Table 5.1. Repository Data Store Comparison
Category | Feature | Berkeley DB | FSFS |
---|---|---|---|
Reliability | Data integrity | when properly deployed, extremely reliable; Berkeley DB 4.4 brings auto-recovery | older versions had some rarely demonstrated, but data-destroying bugs |
Sensitivity to interruptions | very; crashes and permission problems can leave the database “wedged”, requiring journaled recovery procedures | quite insensitive | |
Accessibility | Usable from a read-only mount | no | yes |
Platform-independent storage | no | yes | |
Usable over network filesystems | generally, no | yes | |
Group permissions handling | sensitive to user umask problems; best if accessed by only one user | works around umask problems | |
Scalability | Repository disk usage | larger (especially if logfiles aren't purged) | smaller |
Number of revision trees | database; no problems | some older native filesystems don't scale well with thousands of entries in a single directory | |
Directories with many files | slower | faster | |
Performance | Checking out latest revision | no meaningful difference | no meaningful difference |
Large commits | slower overall, but cost is amortized across the lifetime of the commit | faster overall, but finalization delay may cause client timeouts |
There are advantages and disadvantages to each of these two back-end types. Neither of them is more “official” than the other, though the newer FSFS is the default data store as of Subversion 1.2. Both are reliable enough to trust with your versioned data. But as you can see in Table 5.1, “Repository Data Store Comparison”, the FSFS backend provides quite a bit more flexibility in terms of its supported deployment scenarios. More flexibility means you have to work a little harder to find ways to deploy it incorrectly. Those reasons—plus the fact that not using Berkeley DB means there's one fewer component in the system—largely explain why today almost everyone uses the FSFS backend when creating new repositories.
Fortunately, most programs which access Subversion repositories are blissfully ignorant of which back-end data store is in use. And you aren't even necessarily stuck with your first choice of a data store—in the event that you change your mind later, Subversion provides ways of migrating your repository's data into another repository that uses a different back-end data store. We talk more about that later in this chapter.
The following subsections provide a more detailed look at the available data store types.
When the initial design phase of Subversion was in progress, the developers decided to use Berkeley DB for a variety of reasons, including its open-source license, transaction support, reliability, performance, API simplicity, thread-safety, support for cursors, and so on.
Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes accessing your Subversion repositories don't have to worry about accidentally clobbering each other's data. The isolation provided by the transaction system is such that for any given operation, the Subversion repository code sees a static view of the database—not a database that is constantly changing at the hand of some other process—and can make decisions based on that view. If the decision made happens to conflict with what another process is doing, the entire operation is rolled back as if it never happened, and Subversion gracefully retries the operation against a new, updated (and yet still static) view of the database.
Another great feature of Berkeley DB is hot backups—the ability to backup the database environment without taking it “offline”. We'll discuss how to backup your repository in the section called “Repository Backup”, but the benefits of being able to make fully functional copies of your repositories without any downtime should be obvious.
Berkeley DB is also a very reliable database system when properly used. Subversion uses Berkeley DB's logging facilities, which means that the database first writes to on-disk log files a description of any modifications it is about to make, and then makes the modification itself. This is to ensure that if anything goes wrong, the database system can back up to a previous checkpoint—a location in the log files known not to be corrupt—and replay transactions until the data is restored to a usable state. See the section called “Managing Disk Space” for more about Berkeley DB log files.
But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berkeley DB environments are not portable. You cannot simply copy a Subversion repository that was created on a Unix system onto a Windows system and expect it to work. While much of the Berkeley DB database format is architecture independent, there are other aspects of the environment that are not. Secondly, Subversion uses Berkeley DB in a way that will not operate on Windows 95/98 systems—if you need to house a BDB-backed repository on a Windows machine, stick with Windows 2000 or newer.
While Berkeley DB promises to behave correctly on network shares that meet a particular set of specifications, [30] most networked filesystem types and appliances do not actually meet those requirements. And in no case can you allow a BDB-backed repository that resides on a network share to be accessed by multiple clients of that share at once (which quite often is the whole point of having the repository live on a network share in the first place).
If you attempt to use Berkeley DB on a non-compliant remote filesystem, the results are unpredictable—you may see mysterious errors right away, or it may be months before you discover that your repository database is subtly corrupted. You should strongly consider using the FSFS data store for repositories that need to live on a network share.
Finally, because Berkeley DB is a library linked directly into Subversion, it's more sensitive to interruptions than a typical relational database system. Most SQL systems, for example, have a dedicated server process that mediates all access to tables. If a program accessing the database crashes for some reason, the database daemon notices the lost connection and cleans up any mess left behind. And because the database daemon is the only process accessing the tables, applications don't need to worry about permission conflicts. These things are not the case with Berkeley DB, however. Subversion (and programs using Subversion libraries) access the database tables directly, which means that a program crash can leave the database in a temporarily inconsistent, inaccessible state. When this happens, an administrator needs to ask Berkeley DB to restore to a checkpoint, which is a bit of an annoyance. Other things can cause a repository to “wedge” besides crashed processes, such as programs conflicting over ownership and permissions on the database files.
Berkeley DB 4.4 brings (to Subversion 1.4 and better) the ability for Subversion to automatically and transparently recover Berkeley DB environments in need of such recovery. When a Subversion process attaches to a repository's Berkeley DB environment, it uses some process accounting mechanisms to detect any unclean disconnections by previous processes, performs any necessary recovery, and then continues on as if nothing happened. This doesn't completely eliminate instances of repository wedging, but it does drastically reduce the amount of human interaction required to recover from them.
So while a Berkeley DB repository is quite fast and
scalable, it's best used by a single server process running
as one user—such as Apache's httpd
or svnserve (see Chapter 6, Server Configuration)—rather than accessing it
as many different users via file://
or
svn+ssh://
URLs. If using a Berkeley DB
repository directly as multiple users, be sure to read the section called “Supporting Multiple Repository Access Methods”.
In mid-2004, a second type of repository storage system—one which doesn't use a database at all—came into being. An FSFS repository stores the changes associated with a revision in a single file, and so all of a repository's revisions can be found in a single subdirectory full of numbered files. Transactions are created in separate subdirectories as individual files. When complete, the transaction file is renamed and moved into the revisions directory, thus guaranteeing that commits are atomic. And because a revision file is permanent and unchanging, the repository also can be backed up while “hot”, just like a BDB-backed repository.
The FSFS revision files describe a revision's directory structure, file contents, and deltas against files in other revision trees. Unlike a Berkeley DB database, this storage format is portable across different operating systems and isn't sensitive to CPU architecture. Because there's no journaling or shared-memory files being used, the repository can be safely accessed over a network filesystem and examined in a read-only environment. The lack of database overhead also means that the overall repository size is a bit smaller.
FSFS has different performance characteristics too. When committing a directory with a huge number of files, FSFS is able to more quickly append directory entries. On the other hand, FSFS writes the latest version of a file as a delta against an earlier version, which means that checking out the latest tree is a bit slower than fetching the fulltexts stored in a Berkeley DB HEAD revision. FSFS also has a longer delay when finalizing a commit, which could in extreme cases cause clients to time out while waiting for a response.
The most important distinction, however, is FSFS's imperviousness to “wedging” when something goes wrong. If a process using a Berkeley DB database runs into a permissions problem or suddenly crashes, the database can be left in an unusable state until an administrator recovers it. If the same scenarios happen to a process using an FSFS repository, the repository isn't affected at all. At worst, some transaction data is left behind.
The only real argument against FSFS is its relative immaturity compared to Berkeley DB. Unlike Berkeley DB, which has years of history, its own dedicated development team and, now, Oracle's mighty name attached to it, [31] FSFS is a much newer bit of engineering. Prior to Subversion 1.4, it was still shaking out some pretty serious data integrity bugs which, while only triggered in very rare cases, nonetheless did occur. That said, FSFS has quickly become the back-end of choice for some of the largest public and private Subversion repositories, and promises a lower barrier to entry for Subversion across the board.
In the section called “Strategies for Repository Deployment”, we looked at some of the important decisions that should be made before creating and configuring your Subversion repository. Now, we finally get to get our hands dirty! In this section, we'll see how to actually create a Subversion repository and configure it to perform custom actions when special repository events occur.
Subversion repository creation is an incredibly simple
task. The svnadmin utility that comes with
Subversion provides a subcommand (create
)
for doing just that.
$ svnadmin create /path/to/repos
This creates a new repository in the directory
/path/to/repos
, and with the default
filesystem data store. Prior to Subversion 1.2, the default
was to use Berkeley DB; the default is now FSFS. You can
explicitly choose the filesystem type using the
--fs-type
argument, which accepts as a
parameter either fsfs
or
bdb
.
$ # Create an FSFS-backed repository $ svnadmin create --fs-type fsfs /path/to/repos $
# Create a Berkeley-DB-backed repository $ svnadmin create --fs-type bdb /path/to/repos $
After running this simple command, you have a Subversion repository.
The path argument to svnadmin is just
a regular filesystem path and not a URL like the
svn client program uses when referring to
repositories. Both svnadmin and
svnlook are considered server-side
utilities—they are used on the machine where the
repository resides to examine or modify aspects of the
repository, and are in fact unable to perform tasks across a
network. A common mistake made by Subversion newcomers is
trying to pass URLs (even “local”
file://
ones) to these two programs.
Present in the db/
subdirectory of
your repository is the implementation of the versioned
filesystem. Your new repository's versioned filesystem begins
life at revision 0, which is defined to consist of nothing but
the top-level root (/
) directory.
Initially, revision 0 also has a single revision property,
svn:date
, set to the time at which the
repository was created.
Now that you have a repository, it's time to customize it.
While some parts of a Subversion repository—such as the configuration files and hook scripts—are meant to be examined and modified manually, you shouldn't (and shouldn't need to) tamper with the other parts of the repository “by hand”. The svnadmin tool should be sufficient for any changes necessary to your repository, or you can look to third-party tools (such as Berkeley DB's tool suite) for tweaking relevant subsections of the repository. Do not attempt manual manipulation of your version control history by poking and prodding around in your repository's data store files!
A hook is a program triggered by some repository event, such as the creation of a new revision or the modification of an unversioned property. Some hooks (the so-called “pre hooks”) run in advance of a repository operation and provide a means by which to both report what is about to happen and to prevent it from happening at all. Other hooks (the “post hooks”) run after the completion of a repository event, and are useful for performing tasks that examine—but don't modify—the repository. Each hook is handed enough information to tell what that event is (or was), the specific repository changes proposed (or completed), and the username of the person who triggered the event.
The hooks
subdirectory is, by
default, filled with templates for various repository
hooks.
$ ls repos/hooks/ post-commit.tmpl post-unlock.tmpl pre-revprop-change.tmpl post-lock.tmpl pre-commit.tmpl pre-unlock.tmpl post-revprop-change.tmpl pre-lock.tmpl start-commit.tmpl
There is one template for each hook that the Subversion
repository supports, and by examining the contents of those
template scripts, you can see what triggers each script
to run and what data is passed to that script. Also present
in many of these templates are examples of how one might use
that script, in conjunction with other Subversion-supplied
programs, to perform common useful tasks. To actually install
a working hook, you need only place some executable program or
script into the repos/hooks
directory
which can be executed as the name (like
start-commit or
post-commit) of the hook.
On Unix platforms, this means supplying a script or
program (which could be a shell script, a Python program, a
compiled C binary, or any number of other things) named
exactly like the name of the hook. Of course, the template
files are present for more than just informational
purposes—the easiest way to install a hook on Unix
platforms is to simply copy the appropriate template file to a
new file that lacks the .tmpl
extension,
customize the hook's contents, and ensure that the script is
executable. Windows, however, uses file extensions to
determine whether or not a program is executable, so you would
need to supply a program whose basename is the name of the
hook, and whose extension is one of the special extensions
recognized by Windows for executable programs, such as
.exe
for programs, and
.bat
for batch files.
For security reasons, the Subversion repository executes
hook programs with an empty environment—that is, no
environment variables are set at all, not even
$PATH
(or %PATH%
,
under Windows). Because of this, many administrators
are baffled when their hook program runs fine by hand, but
doesn't work when run by Subversion. Be sure to explicitly
set any necessary environment variables in your hook program
and/or use absolute paths to programs.
Subversion executes hooks as the same user who owns the process which is accessing the Subversion repository. In most cases, the repository is being accessed via a Subversion server, so this user is the same user as which that server runs on the system. The hooks themselves will need to be configured with OS-level permissions that allow that user to execute them. Also, this means that any file or programs (including the Subversion repository itself) accessed directly or indirectly by the hook will be accessed as the same user. In other words, be alert to potential permission-related problems that could prevent the hook from performing the tasks it is designed to perform.
There are nine hooks implemented by the Subversion repository, and you can get details about each of them in the section called “Repository Hooks”. As a repository administrator, you'll need to decide which of hooks you wish to implement (by way of providing an appropriately named and permissioned hook program), and how. When you make this decision, keep in mind the big picture of how your repository is deployed. For example, if you are using server configuration to determine which users are permitted to commit changes to your repository, then you don't need to do this sort of access control via the hook system.
There is no shortage of Subversion hook programs and scripts freely available either from the Subversion community itself or elsewhere. These scripts cover a wide range of utility—basic access control, policy adherence checking, issue tracker integration, email- or syndication-based commit notification, and beyond. See Appendix D, Third Party Tools for discussion of some of the most commonly used hook programs. Or, if you wish to write your own, see Chapter 8, Embedding Subversion.
While hook scripts can do almost
anything, there is one dimension in which hook script
authors should show restraint: do not
modify a commit transaction using hook scripts. While it
might be tempting to use hook scripts to automatically
correct errors or shortcomings or policy violations present
in the files being committed, doing so can cause problems.
Subversion keeps client-side caches of certain bits of
repository data, and if you change a commit transaction in
this way, those caches become indetectably stale. This
inconsistency can lead to surprising and unexpected
behavior. Instead of modifying the transaction, you should
simply validate the transaction in the
pre-commit
hook and reject the commit
if it does not meet the desired requirements. As a
bonus, your users will learn the value of careful,
compliance-minded work habits.
A Berkeley DB environment is an encapsulation of one or more databases, log files, region files and configuration files. The Berkeley DB environment has its own set of default configuration values for things like the number of database locks allowed to be taken out at any given time, or the maximum size of the journaling log files, etc. Subversion's filesystem logic additionally chooses default values for some of the Berkeley DB configuration options. However, sometimes your particular repository, with its unique collection of data and access patterns, might require a different set of configuration option values.
The producers of Berkeley DB understand that different
applications and database environments have different
requirements, and so they have provided a mechanism for
overriding at runtime many of the configuration values for the
Berkeley DB environment: BDB checks for the presence of
a file named DB_CONFIG
in the environment
directory (namely, the repository's
db
subdirectory), and parses the options found in that file . Subversion itself creates
this file when it creates the rest of the repository. The
file initially contains some default options, as well as
pointers to the Berkeley DB online documentation so you can
read about what those options do. Of course, you are free to
add any of the supported Berkeley DB options to your
DB_CONFIG
file. Just be aware that while
Subversion never attempts to read or interpret the contents of
the file, and makes no direct use of the option settings in
it, you'll want to avoid any configuration changes that may
cause Berkeley DB to behave in a fashion that is at odds with
what Subversion might expect. Also, changes made to
DB_CONFIG
won't take effect until you
recover the database environment (using svnadmin
recover).
Maintaining a Subversion repository can be daunting, mostly due to the complexities inherent in systems which have a database backend. Doing the task well is all about knowing the tools—what they are, when to use them, and how to use them. This section will introduce you to the repository administration tools provided by Subversion, and how to wield them to accomplish tasks such as repository data migration, upgrades, backups and cleanups.
Subversion provides a handful of utilities useful for creating, inspecting, modifying and repairing your repository. Let's look more closely at each of those tools. Afterward, we'll briefly examine some of the utilities included in the Berkeley DB distribution that provide functionality specific to your repository's database backend not otherwise provided by Subversion's own tools.
The svnadmin program is the repository administrator's best friend. Besides providing the ability to create Subversion repositories, this program allows you to perform several maintenance operations on those repositories. The syntax of svnadmin is similar to that of other Subversion command-line programs:
$ svnadmin help general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...] Type 'svnadmin help <subcommand>' for help on a specific subcommand. Type 'svnadmin --version' to see the program version and FS modules. Available subcommands: crashtest create deltify …
We've already mentioned svnadmin's
create
subcommand (see the section called “Creating the Repository”). Most of the
others we will cover later
in this chapter. And you can consult the section called “svnadmin” for a full rundown of
subcommands and what each of them offers.
svnlook is a tool provided by Subversion for examining the various revisions and transactions (which are revisions in-the-making) in a repository. No part of this program attempts to change the repository. svnlook is typically used by the repository hooks for reporting the changes that are about to be committed (in the case of the pre-commit hook) or that were just committed (in the case of the post-commit hook) to the repository. A repository administrator may use this tool for diagnostic purposes.
svnlook has a straightforward syntax:
$ svnlook help general usage: svnlook SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...] Note: any subcommand which takes the '--revision' and '--transaction' options will, if invoked without one of those options, act on the repository's youngest revision. Type 'svnlook help <subcommand>' for help on a specific subcommand. Type 'svnlook --version' to see the program version and FS modules. …
Nearly every one of svnlook's
subcommands can operate on either a revision or a
transaction tree, printing information about the tree
itself, or how it differs from the previous revision of the
repository. You use the --revision (-r)
and
--transaction (-t)
options to specify which
revision or transaction, respectively, to examine. In the
absence of both the --revision (-r)
and
--transaction (-t)
options,
svnlook will examine the youngest (or
“HEAD”) revision in the repository. So the
following two commands do exactly the same thing when 19 is
the youngest revision in the repository located at
/path/to/repos
:
$ svnlook info /path/to/repos $ svnlook info /path/to/repos -r 19
The only exception to these rules about subcommands is the svnlook youngest subcommand, which takes no options, and simply prints out the repository's youngest revision number.
$ svnlook youngest /path/to/repos 19
Keep in mind that the only transactions you can browse
are uncommitted ones. Most repositories will have no such
transactions, because transactions are usually either
committed (in which case, you should access them as
revision with the --revision (-r)
option) or
aborted and removed.
Output from svnlook is designed to be
both human- and machine-parsable. Take as an example the output
of the info
subcommand:
$ svnlook info /path/to/repos sally 2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002) 27 Added the usual Greek tree.
The output of the info
subcommand is
defined as:
The author, followed by a newline.
The date, followed by a newline.
The number of characters in the log message, followed by a newline.
The log message itself, followed by a newline.
This output is human-readable, meaning items like the datestamp are displayed using a textual representation instead of something more obscure (such as the number of nanoseconds since the Tasty Freeze guy drove by). But the output is also machine-parsable—because the log message can contain multiple lines and be unbounded in length, svnlook provides the length of that message before the message itself. This allows scripts and other wrappers around this command to make intelligent decisions about the log message, such as how much memory to allocate for the message, or at least how many bytes to skip in the event that this output is not the last bit of data in the stream.
svnlook can perform a variety of other queries: displaying subsets of bits of information we've mentioned previously, recursively listing versioned directory trees, reporting which paths were modified in a given revision or transaction, showing textual and property differences made to files and directories, and so on. See the section called “svnlook” for a full reference of svnlook's features.
While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides a very particular brand of useful functionality—the ability to quickly and easily modify streams of Subversion repository history data by acting as a path-based filter.
The syntax of svndumpfilter is as follows:
$ svndumpfilter help general usage: svndumpfilter SUBCOMMAND [ARGS & OPTIONS ...] Type "svndumpfilter help <subcommand>" for help on a specific subcommand. Type 'svndumpfilter --version' to see the program version. Available subcommands: exclude include help (?, h)
There are only two interesting subcommands. They allow you to make the choice between explicit or implicit inclusion of paths in the stream:
exclude
Filter out a set of paths from the dump data stream.
include
Allow only the requested set of paths to pass through the dump data stream.
You can learn more about these subcommands and svndumpfilter's unique purpose in the section called “Filtering Repository History”.
The svnsync program, which is new to the 1.4 release of Subversion, provides all the functionality required for maintaining a read-only mirror of a Subversion repository. The program really has one job—to transfer one repository's versioned history into another repository. And while there are few ways to do that, its primary strength is that it can operate remotely—the “source” and “sink” [32] repositories may be on different computers from each other and from svnsync itself.
As you might expect, svnsync has a syntax that looks very much like every other program we've mentioned in this chapter:
$ svnsync help general usage: svnsync SUBCOMMAND DEST_URL [ARGS & OPTIONS ...] Type 'svnsync help <subcommand>' for help on a specific subcommand. Type 'svnsync --version' to see the program version and RA modules. Available subcommands: initialize (init) synchronize (sync) copy-revprops help (?, h) $
We talk more about replication repositories with svnsync in the section called “Repository Replication”.
If you're using a Berkeley DB repository, then all of
your versioned filesystem's structure and data live in a set
of database tables within the db/
subdirectory of your repository. This subdirectory is a
regular Berkeley DB environment directory, and can therefore
be used in conjunction with any of the Berkeley database
tools, typically provided as part of the Berkeley DB
distribution.
For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed for Subversion repositories has been duplicated in the svnadmin tool. For example, svnadmin list-unused-dblogs and svnadmin list-dblogs perform a subset of what is provided by the Berkeley db_archive command, and svnadmin recover reflects the common use cases of the db_recover utility.
However, there are still a few Berkeley DB utilities that you might find useful. The db_dump and db_load programs write and read, respectively, a custom file format which describes the keys and values in a Berkeley DB database. Since Berkeley databases are not portable across machine architectures, this format is a useful way to transfer those databases from machine to machine, irrespective of architecture or operating system. As we describe later in this chapter, you can also use svnadmin dump and svnadmin load for similar purposes, but db_dump and db_load can do certain jobs just as well and much faster. They can also be useful if the experienced Berkeley DB hacker needs to do in-place tweaking of the data in a BDB-backed repository for some reason, which is something Subversion's utilities won't allow. Also, the db_stat utility can provide useful information about the status of your Berkeley DB environment, including detailed statistics about the locking and storage subsystems.
For more information on the Berkeley DB tool chain, visit the documentation section of the Berkeley DB section of Oracle's website, located at http://www.oracle.com/technology/documentation/berkeley-db/db/.
Sometimes a user will have an error in her log message (a
misspelling or some misinformation, perhaps). If the
repository is configured (using the
pre-revprop-change
hook; see the section called “Implementing Repository Hooks”) to accept changes to
this log message after the commit is finished, then the user
can “fix” her log message remotely using the
svn program's propset
command (see svn propset).
However, because of the potential to lose information forever,
Subversion repositories are not, by default, configured to
allow changes to unversioned properties—except by an
administrator.
If a log message needs to be changed by an administrator,
this can be done using svnadmin setlog.
This command changes the log message (the
svn:log
property) on a given revision of a
repository, reading the new value from a provided file.
$ echo "Here is the new, correct log message" > newlog.txt $ svnadmin setlog myrepos newlog.txt -r 388
The svnadmin setlog command, by
default, is
still bound by the same protections against modifying
unversioned properties as a remote client is—the
pre-
and
post-revprop-change
hooks are still
triggered, and therefore must be set up to accept changes of
this nature. But an administrator can get around these
protections by passing the --bypass-hooks
option to the svnadmin setlog command.
Remember, though, that by bypassing the hooks, you are likely avoiding such things as email notifications of property changes, backup systems which track unversioned property changes, and so on. In other words, be very careful about what you are changing, and how you change it.
While the cost of storage has dropped incredibly in the past few years, disk usage is still a valid concern for administrators seeking to version large amounts of data. Every bit of version history information stored in the live repository needs to be backed up elsewhere, perhaps multiple times as part of rotating backup schedules. It is useful to know what pieces of Subversion's repository data need to remain on the live site, which need to be backed up, and which can be safely removed.
To keep the repository small, Subversion uses deltification (or, “deltified storage”) within the repository itself. Deltification involves encoding the representation of a chunk of data as a collection of differences against some other chunk of data. If the two pieces of data are very similar, this deltification results in storage savings for the deltified chunk—rather than taking up space equal to the size of the original data, it takes up only enough space to say, “I look just like this other piece of data over here, except for the following couple of changes”. The result is that most of the repository data that tends to be bulky—namely, the contents of versioned files—is stored at a much smaller size than the original “fulltext” representation of that data. And for repositories created with Subversion 1.4 or later, the space savings are even better—now those fulltext representations of file contents are themselves compressed.
Because all of the data that is subject to deltification in a BDB-backed repository is stored in a single Berkeley DB database file, reducing the size of the stored values will not immediately reduce the size of the database file itself. Berkeley DB will, however, keep internal records of unused areas of the database file, and consume those areas first before growing the size of the database file. So while deltification doesn't produce immediate space savings, it can drastically slow future growth of the database.
Though they are uncommon, there are circumstances in which a Subversion commit process might fail, leaving behind in the repository the remnants of the revision-to-be that wasn't—an uncommitted transaction and all the file and directory changes associated with it. This could happen for several reasons: perhaps the client operation was inelegantly terminated by the user, or a network failure occurred in the middle of an operation. Regardless of the reason, dead transactions can happen. They don't do any real harm, other than consuming disk space. A fastidious administrator may nonetheless wish to remove them.
You can use svnadmin's
lstxns
command to list the names of the
currently outstanding transactions.
$ svnadmin lstxns myrepos 19 3a1 a45 $
Each item in the resultant output can then be used with
svnlook (and its
--transaction (-t)
option) to determine who
created the transaction, when it was created, what types of
changes were made in the transaction—information that
is helpful in determining whether or not the transaction is
a safe candidate for removal! If you do indeed want to
remove a transaction, its name
can be passed to svnadmin rmtxns, which
will perform the cleanup of the transaction. In fact, the
rmtxns
subcommand can take its input
directly from the output of
lstxns
!
$ svnadmin rmtxns myrepos `svnadmin lstxns myrepos` $
If you use these two subcommands like this, you should consider making your repository temporarily inaccessible to clients. That way, no one can begin a legitimate transaction before you start your cleanup. Example 5.1, “txn-info.sh (Reporting Outstanding Transactions)” contains a bit of shell-scripting that can quickly generate information about each outstanding transaction in your repository.
Example 5.1. txn-info.sh (Reporting Outstanding Transactions)
#!/bin/sh ### Generate informational output for all outstanding transactions in ### a Subversion repository. REPOS="${1}" if [ "x$REPOS" = x ] ; then echo "usage: $0 REPOS_PATH" exit fi for TXN in `svnadmin lstxns ${REPOS}`; do echo "---[ Transaction ${TXN} ]-------------------------------------------" svnlook info "${REPOS}" -t "${TXN}" done
The output of the script is basically a concatenation of several chunks of svnlook info output (see the section called “svnlook”), and will look something like:
$ txn-info.sh myrepos ---[ Transaction 19 ]------------------------------------------- sally 2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001) 0 ---[ Transaction 3a1 ]------------------------------------------- harry 2001-09-10 16:50:30 -0500 (Mon, 10 Sep 2001) 39 Trying to commit over a faulty network. ---[ Transaction a45 ]------------------------------------------- sally 2001-09-12 11:09:28 -0500 (Wed, 12 Sep 2001) 0 $
A long-abandoned transaction usually represents some sort of failed or interrupted commit. A transaction's datestamp can provide interesting information—for example, how likely is it that an operation begun nine months ago is still active?
In short, transaction cleanup decisions need not be made unwisely. Various sources of information—including Apache's error and access logs, Subversion's operational logs, Subversion revision history, and so on—can be employed in the decision-making process. And of course, an administrator can often simply communicate with a seemingly dead transaction's owner (via email, for example) to verify that the transaction is, in fact, in a zombie state.
Until recently, the largest offender of disk space usage with respect to BDB-backed Subversion repositories was the log files in which Berkeley DB performs its pre-writes before modifying the actual database files. These files capture all the actions taken along the route of changing the database from one state to another—while the database files, at any given time, reflect a particular state, the log files contain all the many changes along the way between states. Thus, they can grow and accumulate quite rapidly.
Fortunately, beginning with the 4.2 release of Berkeley
DB, the database environment has the ability to remove its
own unused log files automatically. Any
repositories created using an svnadmin
which is compiled against Berkeley DB version 4.2 or greater
will be configured for this automatic log file removal. If
you don't want this feature enabled, simply pass the
--bdb-log-keep
option to the
svnadmin create command. If you forget
to do this, or change your mind at a later time, simply edit
the DB_CONFIG
file found in your
repository's db
directory, comment out
the line which contains the set_flags
DB_LOG_AUTOREMOVE
directive, and then run
svnadmin recover on your repository to
force the configuration changes to take effect. See the section called “Berkeley DB Configuration” for more information about
database configuration.
Without some sort of automatic log file removal in place, log files will accumulate as you use your repository. This is actually somewhat of a feature of the database system—you should be able to recreate your entire database using nothing but the log files, so these files can be useful for catastrophic database recovery. But typically, you'll want to archive the log files that are no longer in use by Berkeley DB, and then remove them from disk to conserve space. Use the svnadmin list-unused-dblogs command to list the unused log files:
$ svnadmin list-unused-dblogs /path/to/repos /path/to/repos/log.0000000031 /path/to/repos/log.0000000032 /path/to/repos/log.0000000033 … $ rm `svnadmin list-unused-dblogs /path/to/repos` ## disk space reclaimed!
BDB-backed repositories whose log files are used as part of a backup or disaster recovery plan should not make use of the log file autoremoval feature. Reconstruction of a repository's data from log files can only be accomplished when all the log files are available. If some of the log files are removed from disk before the backup system has a chance to copy them elsewhere, the incomplete set of backed-up log files is essentially useless.
As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be left in frozen state if not closed properly. When this happens, an administrator needs to rewind the database back into a consistent state. This is unique to BDB-backed repositories, though—if you are using FSFS-backed ones instead, this won't apply to you. And for those of you using Subversion 1.4 with Berkeley DB 4.4 or better, you should find that Subversion has become much more resilient in these types of situations. Still, wedged Berkeley DB repositories do occur, and an administrator needs to know how to safely deal with this circumstance.
In order to protect the data in your repository, Berkeley DB uses a locking mechanism. This mechanism ensures that portions of the database are not simultaneously modified by multiple database accessors, and that each process sees the data in the correct state when that data is being read from the database. When a process needs to change something in the database, it first checks for the existence of a lock on the target data. If the data is not locked, the process locks the data, makes the change it wants to make, and then unlocks the data. Other processes are forced to wait until that lock is removed before they are permitted to continue accessing that section of the database. (This has nothing to do with the locks that you, as a user, can apply to versioned files within the repository; we try to clear up the confusion caused by this terminology collision in The three meanings of “lock”.)
In the course of using your Subversion repository, fatal errors or interruptions can prevent a process from having the chance to remove the locks it has placed in the database. The result is that the back-end database system gets “wedged”. When this happens, any attempts to access the repository hang indefinitely (since each new accessor is waiting for a lock to go away—which isn't going to happen).
If this happens to your repository, don't panic. The Berkeley DB filesystem takes advantage of database transactions and checkpoints and pre-write journaling to ensure that only the most catastrophic of events [33] can permanently destroy a database environment. A sufficiently paranoid repository administrator will have made off-site backups of the repository data in some fashion, but don't head off to the tape backup storage closet just yet.
Instead, use the following recipe to attempt to “unwedge” your repository:
Make sure that there are no processes accessing (or attempting to access) the repository. For networked repositories, this means shutting down the Apache HTTP Server or svnserve daemon, too.
Become the user who owns and manages the repository. This is important, as recovering a repository while running as the wrong user can tweak the permissions of the repository's files in such a way that your repository will still be inaccessible even after it is “unwedged”.
Run the command svnadmin recover /path/to/repos. You should see output like this:
Repository lock acquired. Please wait; recovering the repository may take some time... Recovery completed. The latest repos revision is 19.
This command may take many minutes to complete.
Restart the server process.
This procedure fixes almost every case of repository
lock-up. Make sure that you run this command as the user that
owns and manages the database, not just as
root
. Part of the recovery process might
involve recreating from scratch various database files (shared
memory regions, for example). Recovering as
root
will create those files such that they
are owned by root
, which means that even
after you restore connectivity to your repository, regular
users will be unable to access it.
If the previous procedure, for some reason, does not
successfully unwedge your repository, you should do two
things. First, move your broken repository directory aside
(perhaps by renaming it to something like
repos.BROKEN
) and then restore your
latest backup of it. Then, send an email to the Subversion
user list (at <users@subversion.tigris.org>
)
describing your problem in detail. Data integrity is an
extremely high priority to the Subversion developers.
A Subversion filesystem has its data spread throughout files in the repository, in a fashion generally understood by (and of interest to) only the Subversion developers themselves. However, circumstances may arise that call for all, or some subset, of that data to be copied or moved into another repository.
Subversion provides such functionality by way of repository dump streams. A repository dump stream (often referred to as a “dumpfile” when stored as a file on disk) is a portable, flat file format that describes the various revisions in your repository—what was changed, by whom, when, and so on. This dump stream is the primary mechanism used to marshal versioned history—in whole or in part, with or without modification—between repositories. And Subversion provides the tools necessary for creating and loading these dump streams—the svnadmin dump and svnadmin load subcommands, respectively.
While the Subversion repository dump format contains human-readable portions and a familiar structure (it resembles an RFC-822 format, the same type of format used for most email), it is not a plaintext file format. It is a binary file format, highly sensitive to meddling. For example, many text editors will corrupt the file by automatically converting line endings.
There are many reasons for dumping and loading Subversion repository data. Early in Subversion's life, the most common reason was due to the evolution of Subversion itself. As Subversion matured, there were times when changes made to the back-end database schema caused compatibility issues with previous versions of the repository, so users had to dump their repository data using the previous version of Subversion, and load it into a freshly created repository with the new version of Subversion. Now, these types of schema changes haven't occurred since Subversion's 1.0 release, and the Subversion developers promise not to force users to dump and load their repositories when upgrading between minor versions (such as from 1.3 to 1.4) of Subversion. But there are still other reasons for dumping and loading, including re-deploying a Berkeley DB repository on a new OS or CPU architecture, switching between the Berkeley DB and FSFS back-ends, or (as we'll cover in the section called “Filtering Repository History”) purging versioned data from repository history.
Whatever your reason for migrating repository history, using the svnadmin dump and svnadmin load subcommands is straightforward. svnadmin dump will output a range of repository revisions that are formatted using Subversion's custom filesystem dump format. The dump format is printed to the standard output stream, while informative messages are printed to the standard error stream. This allows you to redirect the output stream to a file while watching the status output in your terminal window. For example:
$ svnlook youngest myrepos 26 $ svnadmin dump myrepos > dumpfile * Dumped revision 0. * Dumped revision 1. * Dumped revision 2. … * Dumped revision 25. * Dumped revision 26.
At the end of the process, you will have a single file
(dumpfile
in the previous example) that
contains all the data stored in your repository in the
requested range of revisions. Note that svnadmin
dump is reading revision trees from the repository
just like any other “reader” process would
(svn checkout, for example), so it's safe
to run this command at any time.
The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion repository dump file, and effectively replays those dumped revisions into the target repository for that operation. It also gives informative feedback, this time using the standard output stream:
$ svnadmin load newrepos < dumpfile <<< Started new txn, based on original revision 1 * adding path : A ... done. * adding path : A/B ... done. … ------- Committed new rev 1 (loaded from original rev 1) >>> <<< Started new txn, based on original revision 2 * editing path : A/mu ... done. * editing path : A/D/G/rho ... done. ------- Committed new rev 2 (loaded from original rev 2) >>> … <<< Started new txn, based on original revision 25 * editing path : A/D/gamma ... done. ------- Committed new rev 25 (loaded from original rev 25) >>> <<< Started new txn, based on original revision 26 * adding path : A/Z/zeta ... done. * editing path : A/mu ... done. ------- Committed new rev 26 (loaded from original rev 26) >>>
The result of a load is new revisions added to a
repository—the same thing you get by making commits
against that repository from a regular Subversion client. And
just as in a commit, you can use hook programs to perform
actions before and after each of the commits made during a
load process. By passing the
--use-pre-commit-hook
and
--use-post-commit-hook
options to
svnadmin load, you can instruct Subversion
to execute the pre-commit and post-commit hook programs,
respectively, for each loaded revision. You might use these,
for example, to ensure that loaded revisions pass through the
same validation steps that regular commits pass through. Of
course, you should use these options with care—if your
post-commit hook sends emails to a mailing list for each new
commit, you might not want to spew hundreds or thousands of
commit emails in rapid succession at that list! You can read more about the use of hook
scripts in the section called “Implementing Repository Hooks”.
Note that because svnadmin uses standard input and output streams for the repository dump and load process, people who are feeling especially saucy can try things like this (perhaps even using different versions of svnadmin on each side of the pipe):
$ svnadmin create newrepos $ svnadmin dump oldrepos | svnadmin load newrepos
By default, the dump file will be quite large—much
larger than the repository itself. That's because by default
every version of every file is expressed as a full text in the
dump file. This is the fastest and simplest behavior, and
nice if you're piping the dump data directly into some other
process (such as a compression program, filtering program, or
into a loading process). But if you're creating a dump file
for longer-term storage, you'll likely want to save disk space
by using the --deltas
option. With this
option, successive revisions of files will be output as
compressed, binary differences—just as file revisions
are stored in a repository. This option is slower, but
results in a dump file much closer in size to the original
repository.
We mentioned previously that svnadmin
dump outputs a range of revisions. Use the
--revision (-r)
option to specify a single
revision to dump, or a range of revisions. If you omit this
option, all the existing repository revisions will be
dumped.
$ svnadmin dump myrepos -r 23 > rev-23.dumpfile $ svnadmin dump myrepos -r 100:200 > revs-100-200.dumpfile
As Subversion dumps each new revision, it outputs only enough information to allow a future loader to re-create that revision based on the previous one. In other words, for any given revision in the dump file, only the items that were changed in that revision will appear in the dump. The only exception to this rule is the first revision that is dumped with the current svnadmin dump command.
By default, Subversion will not express the first dumped revision as merely differences to be applied to the previous revision. For one thing, there is no previous revision in the dump file! And secondly, Subversion cannot know the state of the repository into which the dump data will be loaded (if it ever is). To ensure that the output of each execution of svnadmin dump is self-sufficient, the first dumped revision is by default a full representation of every directory, file, and property in that revision of the repository.
However, you can change this default behavior. If you add
the --incremental
option when you dump your
repository, svnadmin will compare the first
dumped revision against the previous revision in the
repository, the same way it treats every other revision that
gets dumped. It will then output the first revision exactly
as it does the rest of the revisions in the dump
range—mentioning only the changes that occurred in that
revision. The benefit of this is that you can create several
small dump files that can be loaded in succession, instead of
one large one, like so:
$ svnadmin dump myrepos -r 0:1000 > dumpfile1 $ svnadmin dump myrepos -r 1001:2000 --incremental > dumpfile2 $ svnadmin dump myrepos -r 2001:3000 --incremental > dumpfile3
These dump files could be loaded into a new repository with the following command sequence:
$ svnadmin load newrepos < dumpfile1 $ svnadmin load newrepos < dumpfile2 $ svnadmin load newrepos < dumpfile3
Another neat trick you can perform with this
--incremental
option involves appending to an
existing dump file a new range of dumped revisions. For
example, you might have a post-commit
hook
that simply appends the repository dump of the single revision
that triggered the hook. Or you might have a script that runs
nightly to append dump file data for all the revisions that
were added to the repository since the last time the script
ran. Used like this, svnadmin dump can be
one way to back up changes to your repository over time in case
of a system crash or some other catastrophic event.
The dump format can also be used to merge the contents of
several different repositories into a single repository. By
using the --parent-dir
option of
svnadmin load, you can specify a new
virtual root directory for the load process. That means if
you have dump files for three repositories, say
calc-dumpfile
,
cal-dumpfile
, and
ss-dumpfile
, you can first create a new
repository to hold them all:
$ svnadmin create /path/to/projects $
Then, make new directories in the repository which will encapsulate the contents of each of the three previous repositories:
$ svn mkdir -m "Initial project roots" \ file:///path/to/projects/calc \ file:///path/to/projects/calendar \ file:///path/to/projects/spreadsheet Committed revision 1. $
Lastly, load the individual dump files into their respective locations in the new repository:
$ svnadmin load /path/to/projects --parent-dir calc < calc-dumpfile … $ svnadmin load /path/to/projects --parent-dir calendar < cal-dumpfile … $ svnadmin load /path/to/projects --parent-dir spreadsheet < ss-dumpfile … $
We'll mention one final way to use the Subversion repository dump format—conversion from a different storage mechanism or version control system altogether. Because the dump file format is, for the most part, human-readable, it should be relatively easy to describe generic sets of changes—each of which should be treated as a new revision—using this file format. In fact, the cvs2svn utility (see the section called “Converting a Repository from CVS to Subversion”) uses the dump format to represent the contents of a CVS repository so that those contents can be copied into a Subversion repository.
Since Subversion stores your versioned history using, at the very least, binary differencing algorithms and data compression (optionally in a completely opaque database system), attempting manual tweaks is unwise, if not quite difficult, and at any rate strongly discouraged. And once data has been stored in your repository, Subversion generally doesn't provide an easy way to remove that data. [34] But inevitably, there will be times when you would like to manipulate the history of your repository. You might need to strip out all instances of a file that was accidentally added to the repository (and shouldn't be there for whatever reason). [35] Or, perhaps you have multiple projects sharing a single repository, and you decide to split them up into their own repositories. To accomplish tasks like this, administrators need a more manageable and malleable representation of the data in their repositories—the Subversion repository dump format.
As we described in the section called “Migrating Repository Data Elsewhere”, the Subversion repository dump format is a human-readable representation of the changes that you've made to your versioned data over time. You use the svnadmin dump command to generate the dump data, and svnadmin load to populate a new repository with it (see the section called “Migrating Repository Data Elsewhere”). The great thing about the human-readability aspect of the dump format is that, if you aren't careless about it, you can manually inspect and modify it. Of course, the downside is that if you have three years' worth of repository activity encapsulated in what is likely to be a very large dump file, it could take you a long, long time to manually inspect and modify it.
That's where svndumpfilter becomes useful. This program acts as path-based filter for repository dump streams. Simply give it either a list of paths you wish to keep, or a list of paths you wish to not keep, then pipe your repository dump data through this filter. The result will be a modified stream of dump data that contains only the versioned paths you (explicitly or implicitly) requested.
Let's look a realistic example of how you might use this program. We discuss elsewhere (see the section called “Planning Your Repository Organization”) the process of deciding how to choose a layout for the data in your repositories—using one repository per project or combining them, arranging stuff within your repository, and so on. But sometimes after new revisions start flying in, you rethink your layout and would like to make some changes. A common change is the decision to move multiple projects which are sharing a single repository into separate repositories for each project.
Our imaginary repository contains three projects:
calc
, calendar
, and
spreadsheet
. They have been living
side-by-side in a layout like this:
/ calc/ trunk/ branches/ tags/ calendar/ trunk/ branches/ tags/ spreadsheet/ trunk/ branches/ tags/
To get these three projects into their own repositories, we first dump the whole repository:
$ svnadmin dump /path/to/repos > repos-dumpfile * Dumped revision 0. * Dumped revision 1. * Dumped revision 2. * Dumped revision 3. … $
Next, run that dump file through the filter, each time including only one of our top-level directories, and resulting in three new dump files:
$ svndumpfilter include calc < repos-dumpfile > calc-dumpfile … $ svndumpfilter include calendar < repos-dumpfile > cal-dumpfile … $ svndumpfilter include spreadsheet < repos-dumpfile > ss-dumpfile … $
At this point, you have to make a decision. Each of
your dump files will create a valid repository,
but will preserve the paths exactly as they were in the
original repository. This means that even though you would
have a repository solely for your calc
project, that repository would still have a top-level
directory named calc
. If you want
your trunk
, tags
,
and branches
directories to live in the
root of your repository, you might wish to edit your
dump files, tweaking the Node-path
and
Node-copyfrom-path
headers to no longer have
that first calc/
path component. Also,
you'll want to remove the section of dump data that creates
the calc
directory. It will look
something like:
Node-path: calc Node-action: add Node-kind: dir Content-length: 0
If you do plan on manually editing the dump file to remove a top-level directory, make sure that your editor is not set to automatically convert end-of-line characters to the native format (e.g. \r\n to \n), as the content will then not agree with the metadata. This will render the dump file useless.
All that remains now is to create your three new repositories, and load each dump file into the right repository:
$ svnadmin create calc; svnadmin load calc < calc-dumpfile <<< Started new transaction, based on original revision 1 * adding path : Makefile ... done. * adding path : button.c ... done. … $ svnadmin create calendar; svnadmin load calendar < cal-dumpfile <<< Started new transaction, based on original revision 1 * adding path : Makefile ... done. * adding path : cal.c ... done. … $ svnadmin create spreadsheet; svnadmin load spreadsheet < ss-dumpfile <<< Started new transaction, based on original revision 1 * adding path : Makefile ... done. * adding path : ss.c ... done. … $
Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions. If a given revision contained only changes to paths that were filtered out, that now-empty revision could be considered uninteresting or even unwanted. So to give the user control over what to do with those revisions, svndumpfilter provides the following command-line options:
--drop-empty-revs
Do not generate empty revisions at all—just omit them.
--renumber-revs
If empty revisions are dropped (using the
--drop-empty-revs
option), change the
revision numbers of the remaining revisions so that
there are no gaps in the numeric sequence.
--preserve-revprops
If empty revisions are not dropped, preserve the revision properties (log message, author, date, custom properties, etc.) for those empty revisions. Otherwise, empty revisions will only contain the original datestamp, and a generated log message that indicates that this revision was emptied by svndumpfilter.
While svndumpfilter can be very
useful, and a huge timesaver, there are unfortunately a
couple of gotchas. First, this utility is overly sensitive
to path semantics. Pay attention to whether paths in your
dump file are specified with or without leading slashes.
You'll want to look at the Node-path
and
Node-copyfrom-path
headers.
… Node-path: spreadsheet/Makefile …
If the paths have leading slashes, you should include leading slashes in the paths you pass to svndumpfilter include and svndumpfilter exclude (and if they don't, you shouldn't). Further, if your dump file has an inconsistent usage of leading slashes for some reason, [36] you should probably normalize those paths so they all have, or lack, leading slashes.
Also, copied paths can give you some trouble. Subversion supports copy operations in the repository, where a new path is created by copying some already existing path. It is possible that at some point in the lifetime of your repository, you might have copied a file or directory from some location that svndumpfilter is excluding, to a location that it is including. In order to make the dump data self-sufficient, svndumpfilter needs to still show the addition of the new path—including the contents of any files created by the copy—and not represent that addition as a copy from a source that won't exist in your filtered dump data stream. But because the Subversion repository dump format only shows what was changed in each revision, the contents of the copy source might not be readily available. If you suspect that you have any copies of this sort in your repository, you might want to rethink your set of included/excluded paths, perhaps including the paths that served as sources of your troublesome copy operations, too.
Finally, svndumpfilter takes path
filtering quite literally. If you are trying to copy the
history of a project rooted at
trunk/my-project
and move it into a
repository of its own, you would, of course, use the
svndumpfilter include command to keep all
the changes in and under
trunk/my-project
. But the resulting
dump file makes no assumptions about the repository into
which you plan to load this data. Specifically, the dump
data might begin with the revision which added the
trunk/my-project
directory, but it will
not contain directives which would
create the trunk
directory itself
(because trunk
doesn't match the
include filter). You'll need to make sure that any
directories which the new dump stream expect to exist
actually do exist in the target repository before trying to
load the stream into that repository.
There are several scenarios in which it is quite handy to have a Subversion repository whose version history is exactly the same as some other repository's. Perhaps the most obvious one is the maintenance of a simple backup repository, used when the primary repository has become inaccessible due to a hardware failure, network outage, or other such annoyance. Other scenarios include deploying mirror repositories to distribute heavy Subversion load across multiple servers, use as a soft-upgrade mechanism, and so on.
As of version 1.4, Subversion provides a program for managing scenarios like these—svnsync. svnsync works by essentially asking the Subversion server to “replay” revisions, one at a time. It then uses that revision information to mimic a commit of the same to another repository. Neither repository needs to be locally accessible to machine on which svnsync is running—its parameters are repository URLs, and it does all its work through Subversion's repository access (RA) interfaces. All it requires is read access to the source repository and read/write access to the destination repository.
When using svnsync against a remote source repository, the Subversion server for that repository must be running Subversion version 1.4 or better.
Assuming you already have a source repository that you'd like to mirror, the next thing you need is an empty target repository which will actually serve as that mirror. This target repository can use either of the available filesystem data-store back-ends (see the section called “Choosing a Data Store”), but it must not yet have any version history in it. The protocol via which svnsync communicates revision information is highly sensitive to mismatches between the versioned histories contained in the source and target repositories. For this reason, while svnsync cannot demand that the target repository be read-only, [37] allowing the revision history in the target repository to change by any mechanism other than the mirroring process is a recipe for disaster.
Do not modify a mirror repository in such a way as to cause its version history to deviate from that of the repository it mirrors. The only commits and revision property modifications that ever occur on that mirror repository should be those performed by the svnsync tool.
Another requirement of the target repository is that the svnsync process be allowed to modify certain revision properties. svnsync stores its bookkeeping information in special revision properties on revision 0 of the destination repository. Because svnsync works within the framework of that repository's hook system, the default state of the repository (which is to disallow revision property changes; see pre-revprop-change) is insufficient. You'll need to explicitly implement the pre-revprop-change hook, and your script must allow svnsync to set and change its special properties. With those provisions in place, you are ready to start mirroring repository revisions.
It's a good idea to implement authorization measures which allow your repository replication process to perform its tasks while preventing other users from modifying the contents of your mirror repository at all.
Let's walk through the use of svnsync in a somewhat typical mirroring scenario. We'll pepper this discourse with practical recommendations which you are free to disregard if they aren't required by or suitable for your environment.
As a service to the fine developers of our favorite version control system, we will be mirroring the public Subversion source code repository and exposing that mirror publicly on the Internet, hosted on a different machine than the one on which the original Subversion source code repository lives. This remote host has a global configuration which permits anonymous users to read the contents of repositories on the host, but requires users to authenticate in order to modify those repositories. (Please forgive us for glossing over the details of Subversion server configuration for the moment—those are covered thoroughly in Chapter 6, Server Configuration.) And for no other reason than that it makes for a more interesting example, we'll be driving the replication process from a third machine, the one which we currently find ourselves using.
First, we'll create the repository which will be our mirror. This and the next couple of steps do require shell access to the machine on which the mirror repository will live. Once the repository is all configured, though, we shouldn't need to touch it directly again.
$ ssh admin@svn.example.com \ "svnadmin create /path/to/repositories/svn-mirror" admin@svn.example.com's password: ******** $
At this point, we have our repository, and due to our
server's configuration, that repository is now
“live” on the Internet. Now, because we don't
want anything modifying the repository except our replication
process, we need a way to distinguish that process from other
would-be committers. To do so, we use a dedicated username
for our process. Only commits and revision property
modifications performed by the special username
syncuser
will be allowed.
We'll use the repository's hook system both to allow the
replication process to do what it needs to do, and to enforce
that only it is doing those things. We accomplish this by
implementing two of the repository event
hooks—pre-revprop-change and start-commit. Our
pre-revprop-change
hook script is found
in Example 5.2, “Mirror repository's pre-revprop-change hook script”, and basically verifies that the user attempting the
property changes is our syncuser
user. If
so, the change is allowed; otherwise, it is denied.
Example 5.2. Mirror repository's pre-revprop-change hook script
#!/bin/sh USER="$3" if [ "$USER" = "syncuser" ]; then exit 0; fi echo "Only the syncuser user may change revision properties" >&2 exit 1
That covers revision property changes. Now we need to
ensure that only the syncuser
user is
permitted to commit new revisions to the repository. We do
this using a start-commit
hook scripts
like the one in Example 5.3, “Mirror repository's start-commit hook script”.
Example 5.3. Mirror repository's start-commit hook script
#!/bin/sh USER="$2" if [ "$USER" = "syncuser" ]; then exit 0; fi echo "Only the syncuser user may commit new revisions" >&2 exit 1
After installing our hook scripts and ensuring that they are executable by the Subversion server, we're finished with the setup of the mirror repository. Now, we get to actually do the mirroring.
The first thing we need to do with
svnsync is to register in our target
repository the fact that it will be a mirror of the source
repository. We do this using the svnsync
initialize subcommand. Note that the various
svnsync subcommands provide several of the
same authentication-related options that
svn does: --username
,
--password
,
--non-interactive
,
--config-dir
, and
--no-auth-cache
.
$ svnsync help init initialize (init): usage: svnsync initialize DEST_URL SOURCE_URL Initialize a destination repository for synchronization from another repository. The destination URL must point to the root of a repository with no committed revisions. The destination repository must allow revision property changes. You should not commit to, or make revision property changes in, the destination repository by any method other than 'svnsync'. In other words, the destination repository should be a read-only mirror of the source repository. Valid options: --non-interactive : do no interactive prompting --no-auth-cache : do not cache authentication tokens --username arg : specify a username ARG --password arg : specify a password ARG --config-dir arg : read user configuration files from directory ARG $ svnsync initialize http://svn.example.com/svn-mirror \ http://svn.collab.net/repos/svn \ --username syncuser --password syncpass Copied properties for revision 0. $
Our target repository will now remember that it is a mirror of the public Subversion source code repository. Notice that we provided a username and password as arguments to svnsync—that was required by the pre-revprop-change hook on our mirror repository.
The URLs provided to svnsync must point to the root directories of the target and source repositories, respectively. The tool does not handle mirroring of repository subtrees.
The initial release of svnsync (in
Subversion 1.4) has a small shortcoming—the values
given to the --username
and
--password
command-line options get used
for authentication against both the source and destination
repositories. Obviously, there's no guarantee that the
synchronizing user's credentials are the same in both
places. In the event that they are not the same, users
trying to run svnsync in non-interactive
mode (with the --non-interactive
option)
might experience problems.
And now comes the fun part. With a single subcommand, we can tell svnsync to copy all the as-yet-unmirrored revisions from the source repository to the target. [38] The svnsync synchronize subcommand will peek into the special revision properties previously stored on the target repository, and determine what repository it is mirroring and that the most recently mirrored revision was revision 0. Then it will query the source repository and determine what the latest revision in that repository is. Finally, it asks the source repository's server to start replaying all the revisions between 0 and that latest revision. As svnsync get the resulting response from the source repository's server, it begins forwarding those revisions to the target repository's server as new commits.
$ svnsync help synchronize synchronize (sync): usage: svnsync synchronize DEST_URL Transfer all pending revisions from source to destination. … $ svnsync synchronize http://svn.example.com/svn-mirror \ --username syncuser --password syncpass Committed revision 1. Copied properties for revision 1. Committed revision 2. Copied properties for revision 2. Committed revision 3. Copied properties for revision 3. … Committed revision 23406. Copied properties for revision 23406. Committed revision 23407. Copied properties for revision 23407. Committed revision 23408. Copied properties for revision 23408.
Of particular interest here is that for each mirrored
revision, there is first a commit of that revision to the
target repository, and then property changes follow. This is
because the initial commit is performed by (and attributed to)
the user syncuser
, and datestamped with the
time as of that revision's creation. Also, Subversion's
underlying repository access interfaces don't provide a
mechanism for setting arbitrary revision properties as part of
a commit. So svnsync follows up with an
immediate series of property modifications which copy all the
revision properties found for that revision in the source
repository into the target repository. This also has the
effect of fixing the author and datestamp of the revision
to match that of the source repository.
Also noteworthy is that svnsync performs careful bookkeeping that allows it to be safely interrupted and restarted without ruining the integrity of the mirrored data. If a network glitch occurs while mirroring a repository, simply repeat the svnsync synchronize command and it will happily pick up right where it left off. In fact, as new revisions appear in the source repository, this is exactly what you to do in order to keep your mirror up-to-date.
There is, however, one bit of inelegance in the process. Because Subversion revision properties can be changed at any time throughout the lifetime of the repository, and don't leave an audit trail that indicates when they were changed, replication processes have to pay special attention to them. If you've already mirrored the first 15 revisions of a repository and someone then changes a revision property on revision 12, svnsync won't know to go back and patch up its copy of revision 12. You'll need to tell it to do so manually by using (or with some additionally tooling around) the svnsync copy-revprops subcommand, which simply re-replicates all the revision properties for a particular revision.
$ svnsync help copy-revprops copy-revprops: usage: svnsync copy-revprops DEST_URL REV Copy all revision properties for revision REV from source to destination. … $ svnsync copy-revprops http://svn.example.com/svn-mirror 12 \ --username syncuser --password syncpass Copied properties for revision 12. $
That's repository replication in a nutshell. You'll likely want some automation around such a process. For example, while our example was a pull-and-push setup, you might wish to have your primary repository push changes to one or more blessed mirrors as part of its post-commit and post-revprop-change hook implementations. This would enable the mirror to be up-to-date in as near to realtime as is likely possible.
Also, while it isn't very commonplace to do so, svnsync does gracefully mirror repositories in which the user as whom it authenticates only has partial read access. It simply copies only the bits of the repository that it is permitted to see. Obviously such a mirror is not useful as a backup solution.
As far as user interaction with repositories and mirrors goes, it is possible to have a single working copy that interacts with both, but you'll have to jump through some hoops to make it happen. First, you need to ensure that both the primary and mirror repositories have the same repository UUID (which is not the case by default). You can set the mirror repository's UUID by loading a dump file stub into it which contains the UUID of the primary repository, like so:
$ cat - <<EOF | svnadmin load --force-uuid dest SVN-fs-dump-format-version: 2 UUID: 65390229-12b7-0310-b90b-f21a5aa7ec8e EOF $
Now that the two repositories have the same UUID, you can use svn switch --relocate to point your working copy to whichever of the repositories you wish to operate against, a process which is described in svn switch. There is a possible danger here, though, in that if the primary and mirror repositories aren't in close synchronization, a working copy up-to-date with, and pointing to, the primary repository will, if relocated to point to an out-of-date mirror, become confused about the apparent sudden loss of revisions it fully expects to be present, and throws errors to that effect. If this occurs, you can relocate your working copy back to the primary repository and then either wait until the mirror repository is up-to-date, or backdate your working copy to a revision you know is present in the sync repository and then retry the relocation.
Finally, be aware that the revision-based replication provided by svnsync is only that—replication of revisions. It does not include such things as the hook implementations, repository or server configuration data, uncommitted transactions, or information about user locks on repository paths. Only information carried by the Subversion repository dump file format is available for replication.
Despite numerous advances in technology since the birth of the modern computer, one thing unfortunately rings true with crystalline clarity—sometimes, things go very, very awry. Power outages, network connectivity dropouts, corrupt RAM and crashed hard drives are but a taste of the evil that Fate is poised to unleash on even the most conscientious administrator. And so we arrive at a very important topic—how to make backup copies of your repository data.
There are two types of backup methods available for Subversion repository administrators—full and incremental. A full backup of the repository involves squirreling away in one sweeping action all the information required to fully reconstruct that repository in the event of a catastrophe. Usually, it means, quite literally, the duplication of the entire repository directory (which includes either a Berkeley DB or FSFS environment). Incremental backups are lesser things, backups of only the portion of the repository data that has changed since the previous backup.
As far as full backups go, the naive approach might seem like a sane one, but unless you temporarily disable all other access to your repository, simply doing a recursive directory copy runs the risk of generating a faulty backup. In the case of Berkeley DB, the documentation describes a certain order in which database files can be copied that will guarantee a valid backup copy. A similar ordering exists for FSFS data. But you don't have to implement these algorithms yourself, because the Subversion development team has already done so. The svnadmin hotcopy command takes care of the minutia involved in making a hot backup of your repository. And its invocation is as trivial as Unix's cp or Windows' copy operations:
$ svnadmin hotcopy /path/to/repos /path/to/repos-backup
The resulting backup is a fully functional Subversion repository, able to be dropped in as a replacement for your live repository should something go horribly wrong.
When making copies of a Berkeley DB repository, you can
even instruct svnadmin hotcopy to purge any
unused Berkeley DB logfiles (see the section called “Purging unused Berkeley DB logfiles”) from the
original repository upon completion of the copy. Simply
provide the --clean-logs
option on the
command-line.
$ svnadmin hotcopy --clean-logs /path/to/bdb-repos /path/to/bdb-repos-backup
Additional tooling around this command is available, too.
The tools/backup/
directory of the
Subversion source distribution holds the
hot-backup.py script. This script adds a
bit of backup management atop svnadmin
hotcopy, allowing you to keep only the most recent
configured number of backups of each repository. It will
automatically manage the names of the backed-up repository
directories to avoid collisions with previous backups, and
will “rotate off” older backups, deleting them so
only the most recent ones remain. Even if you also have an
incremental backup, you might want to run this program on a
regular basis. For example, you might consider using
hot-backup.py from a program scheduler
(such as cron on Unix systems) which will
cause it to run nightly (or at whatever granularity of Time
you deem safe).
Some administrators use a different backup mechanism built
around generating and storing repository dump data. We
described in the section called “Migrating Repository Data Elsewhere”
how to use svnadmin dump --incremental to
perform an incremental backup of a given revision or range of
revisions. And of course, there is a full backup variation of
this achieved by omitting the --incremental
option to that command. There is some value in these methods,
in that the format of your backed-up information is
flexible—it's not tied to a particular platform,
versioned filesystem type, or release of Subversion or
Berkeley DB. But that flexibility comes at a cost, namely
that restoring that data can take a long time—longer
with each new revision committed to your repository. Also, as
is the case with so many of the various backup methods,
revision property changes made to already-backed-up revisions
won't get picked up by a non-overlapping, incremental dump
generation. For these reasons, we recommend against relying
solely on dump-based backup approaches.
As you can see, each of the various backup types and methods has its advantages and disadvantages. The easiest is by far the full hot backup, which will always result in a perfect working replica of your repository. Should something bad happen to your live repository, you can restore from the backup with a simple recursive directory copy. Unfortunately, if you are maintaining multiple backups of your repository, these full copies will each eat up just as much disk space as your live repository. Incremental backups, by contrast, tend to be quicker to generate and smaller to store. But the restoration process can be a pain, often involving applying multiple incremental backups. And other methods have their own peculiarities. Administrators need to find the balance between the cost of making the backup and the cost of restoring it.
The svnsync program (see the section called “Repository Replication”) actually provides a rather handy middle-ground approach. If you are regularly synchronizing a read-only mirror with your main repository, then in a pinch, your read-only mirror is probably a good candidate for replacing that main repository if it falls over. The primary disadvantage of this method is that only the versioned repository data gets synchronized—repository configuration files, user-specified repository path locks, and other items which might live in the physical repository directory but not inside the repository's virtual versioned filesystem are not handled by svnsync.
In any backup scenario, repository administrators need to be aware of how modifications to unversioned revision properties affect their backups. Since these changes do not themselves generate new revisions, they will not trigger post-commit hooks, and may not even trigger the pre-revprop-change and post-revprop-change hooks. [39] And since you can change revision properties without respect to chronological order—you can change any revision's properties at any time—an incremental backup of the latest few revisions might not catch a property modification to a revision that was included as part of a previous backup.
Generally speaking, only the truly paranoid would need to backup their entire repository, say, every time a commit occurred. However, assuming that a given repository has some other redundancy mechanism in place with relatively fine granularity (like per-commit emails or incremental dumps), a hot backup of the database might be something that a repository administrator would want to include as part of a system-wide nightly backup. It's your data—protect it as much as you'd like.
Often, the best approach to repository backups is a diversified one which leverages combinations of the methods described here. The Subversion developers, for example, back up the Subversion source code repository nightly using hot-backup.py and an offsite rsync of those full backups; keep multiple archives of all the commit and property change notification emails; and have repository mirrors maintained by various volunteers using svnsync. Your solution might be similar, but should be catered to your needs and that delicate balance of convenience with paranoia. And whatever you do, validate your backups from time to time—what good is a spare tire that has a hole in it? While all of this might not save your hardware from the iron fist of Fate, [40] it should certainly help you recover from those trying times.
By now you should have a basic understanding of how to create, configure, and maintain Subversion repositories. We've introduced you to the various tools that will assist you with this task. Throughout the chapter, we've noted common administration pitfalls, and suggestions for avoiding them.
All that remains is for you to decide what exciting data to store in your repository, and finally, how to make it available over a network. The next chapter is all about networking.
[26] This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm beyond the working copy where everyone's data hangs out.
[27] Whether founded in ignorance or in poorly considered concepts about how to derive legitimate software development metrics, global revision numbers are a silly thing to fear, and not the kind of thing you should weigh when deciding how to arrange your projects and repositories.
[28] The trunk
, tags
,
and branches
trio are sometimes referred
to as “the TTB directories”.
[29] Often pronounced “fuzz-fuzz”, if Jack Repenning has anything to say about it. (This book, however, assumes that the reader is thinking “eff-ess-eff-ess”.)
[30] Berkeley DB requires that the underlying filesystem implement strict POSIX locking semantics, and more importantly, the ability to map files directly into process memory.
[31] Oracle bought Sleepycat and its flagship software, Berkeley DB, on Valentine's Day in 2006.
[32] Or is that, the “sync”?
[33] E.g.: hard drive + huge electromagnet = disaster.
[34] That's rather the reason you use version control at all, right?
[35] Conscious, cautious removal of certain bits of versioned data is actually supported by real use-cases. That's why an “obliterate” feature has been one of the most highly requested Subversion features, and one which the Subversion developers hope to soon provide.
[36] While svnadmin dump has a consistent leading slash policy—to not include them—other programs which generate dump data might not be so consistent.
[37] In fact, it can't truly be read-only, or svnsync itself would have a tough time copying revision history into it.
[38] Be forewarned that while it will take only a few seconds for the average reader to parse this paragraph and the sample output which follows it, the actual time required to complete such a mirroring operation is, shall we say, quite a bit longer.
[39] svnadmin setlog can be called in a way that bypasses the hook interface altogether.
[40] You know—the collective term for all of her “fickle fingers”.
Table of Contents
A Subversion repository can be accessed simultaneously by
clients running on the same machine on which the repository
resides using the file://
method. But the
typical Subversion setup involves a single server machine being
accessed from clients on computers all over the office—or,
perhaps, all over the world.
This chapter describes how to get your Subversion repository exposed outside its host machine for use by remote clients. We will cover Subversion's currently available server mechanisms, discussing the configuration and use of each. After reading this section, you should be able to decide which networking setup is right for your needs, and understand how to enable such a setup on your host computer.
Subversion was designed with an abstract network layer. This means that a repository can be programmatically accessed by any sort of server process, and the client “repository access” API allows programmers to write plugins that speak relevant network protocols. In theory, Subversion can use an infinite number of network implementations. In practice, there are only two servers at the time of this writing.
Apache is an extremely popular webserver; using the mod_dav_svn module, Apache can access a repository and make it available to clients via the WebDAV/DeltaV protocol, which is an extension of HTTP. Because Apache is an extremely extensible web server, it provides a number of features “for free”, such as encrypted SSL communication, logging, integration with a number of third-party authentication systems, and limited built-in web browsing of repositories.
In the other corner is svnserve: a small, lightweight server program that speaks a custom protocol with clients. Because its protocol is explicitly designed for Subversion and is stateful (unlike HTTP), it provides significantly faster network operations—but at the cost of some features as well. It only understands CRAM-MD5 authentication, has no logging, no web-browsing, and no option to encrypt network traffic. It is, however, extremely easy to set up and is often the best option for small teams just starting out with Subversion.
A third option is to use svnserve
tunneled over an SSH connection. Even though this scenario
still uses svnserve, it differs quite a bit
in features from a traditional svnserve
deployment. SSH is used to encrypt all communication. SSH is
also used exclusively to authenticate, so real system accounts
are required on the server host (unlike
vanilla svnserve, which has its own private
user accounts.) Finally, because this setup requires that each
user spawn a private, temporary svnserve
process, it's equivalent (from a permissions point of view) to
allowing a group of local users to all access the repository
via file://
URLs. Path-based access control
has no meaning, since each user is accessing the repository
database files directly.
Here's a quick summary of the three typical server deployments.
Table 6.1. Comparison of Subversion Server Options
Feature | Apache + mod_dav_svn | svnserve | svnserve over SSH |
---|---|---|---|
Authentication options | HTTP(S) basic auth, X.509 certificates, LDAP, NTLM, or any other mechanism available to Apache httpd | CRAM-MD5 | SSH |
User account options | private 'users' file | private 'users' file | system accounts |
Authorization options | read/write access can be granted over whole repository, or specified per-path. | read/write access can be granted over whole repository, or specified per-path. | read/write access only grantable over whole repository |
Encryption | via optional SSL | none | SSH tunneled |
Logging | full Apache logs of each HTTP request, with optional “high-level” logging of general client operations | no logging | no logging |
Interoperability | partially usable by other WebDAV clients | only talks to svn clients | only talks to svn clients |
Web viewing | limited built-in support, or via 3rd-party tools such as ViewVC | only via 3rd-party tools such as ViewVC | only via 3rd-party tools such as ViewVC |
Speed | somewhat slower | somewhat faster | somewhat faster |
Initial setup | somewhat complex | extremely simple | moderately simple |
So, which server should you use? Which is best?
Obviously, there's no right answer to that question. Every team has different needs, and the different servers all represent different sets of tradeoffs. The Subversion project itself doesn't endorse one server or another, or consider either server more “official” than another.
Here are some reasons why you might choose one deployment over another, as well as reasons you might not choose one.
Quick and easy to set up.
Network protocol is stateful and noticeably faster than WebDAV.
No need to create system accounts on server.
Password is not passed over the network.
Network protocol is not encrypted.
Only one choice of authentication method.
Password is stored in the clear on the server.
No logging of any kind, not even errors.
Network protocol is stateful and noticeably faster than WebDAV.
You can take advantage of existing ssh accounts and user infrastructure.
All network traffic is encrypted.
Only one choice of authentication method.
No logging of any kind, not even errors.
Requires users to be in same system group, or use a shared ssh key.
If used improperly, can lead to file permissions problems.
Allows Subversion to use any of the numerous authentication systems already integrated with Apache.
No need to create system accounts on server.
Full Apache logging.
Network traffic can be encrypted via SSL.
HTTP(S) can usually go through corporate firewalls.
Built-in repository browsing via web browser.
Repository can be mounted as a network drive for transparent version control. (See the section called “Autoversioning”.)
Noticeably slower than svnserve, because HTTP is a stateless protocol and requires more turnarounds.
Initial setup can be complex.
In general, the authors of this book recommend a vanilla svnserve installation for small teams just trying to get started with a Subversion server; it's the simplest to set up, and has the fewest maintenance issues. You can always switch to a more complex server deployment as your needs change.
Here are some general recommendations and tips, based on years of supporting users:
If you're trying to set up the simplest possible server for your group, then a vanilla svnserve installation is the easiest, fastest route. Note, however, that your repository data will be transmitted in the clear over the network. If your deployment is entirely within your company's LAN or VPN, this isn't an issue. If the repository is exposed to the wide-open internet, then you might want to make sure the repository's contents aren't sensitive (e.g. it contains only open-source code.)
If you need to integrate with existing identity systems (LDAP, Active Directory, NTLM, X.509, etc.), then an Apache-based server is your only real option. Similarly, if you absolutely need server-side logs of either server errors or client activities, then an Apache-based server is required.
If you've decided to use either Apache or stock
svnserve, create a
single svn
user on your system and run
the server process as that user. Be sure to make the
repository directory wholly owned by
the svn
user as well. From a security
point of view, this keeps the repository data nicely
siloed and protected by operating system filesystem
permissions, changeable by only the Subversion server
process itself.
If you have an existing infrastructure heavily based on SSH accounts, and if your users already have system accounts on your server machine, then it makes sense to deploy an svnserve-over-ssh solution. Otherwise, we don't widely recommend this option to the public. It's generally considered safer to have your users access the repository via (imaginary) accounts managed by svnserve or Apache, rather than by full-blown system accounts. If your deep desire for encrypted communication still draws you to this option, we recommend using Apache with SSL instead.
Do not be seduced by the simple
idea of having all of your users access a repository
directly via file://
URLs. Even if
the repository is readily available to everyone via
network share, this is a bad idea. It removes any layers
of protection between the users and the repository: users
can accidentally (or intentionally) corrupt the repository
database, it becomes hard to take the repository offline
for inspection or upgrade, and it can lead to a mess of
file-permissions problems (see
the section called “Supporting Multiple Repository Access Methods”.) Note
that this is also one of the reasons we warn against
accessing repositories via svn+ssh://
URLs—from a security standpoint, it's effectively
the same as local users accessing
via file://
, and can entail all the
same problems if the administrator isn't careful.
The svnserve program is a lightweight
server, capable of speaking to clients over TCP/IP using a
custom, stateful protocol. Clients contact an
svnserve server by using URLs that begin with
the svn://
or svn+ssh://
scheme. This section will explain the different ways of running
svnserve, how clients authenticate themselves
to the server, and how to configure appropriate access control
to your repositories.
There are a few different ways to run the svnserve program:
Run svnserve as a standalone daemon, listening for requests.
Have the Unix inetd daemon temporarily spawn svnserve whenever a request comes in on a certain port.
Have SSH invoke a temporary svnserve over an encrypted tunnel.
Run svnserve as a Windows service.
The easiest option is to run svnserve
as a standalone “daemon” process. Use the
-d
option for this:
$ svnserve -d $ # svnserve is now running, listening on port 3690
When running svnserve in daemon mode,
you can use the --listen-port=
and
--listen-host=
options to customize the
exact port and hostname to “bind” to.
Once we successfully start svnserve as above,
it makes every repository on your system available to the
network. A client needs to specify an
absolute path in the repository URL. For
example, if a repository is located at
/usr/local/repositories/project1
, then a
client would reach it via
svn://host.example.com/usr/local/repositories/project1
.
To increase security, you can pass the -r
option to svnserve, which restricts it to
exporting only repositories below that path. For example:
$ svnserve -d -r /usr/local/repositories …
Using the -r
option effectively
modifies the location that the program treats as the root of
the remote filesystem space. Clients then use URLs that
have that path portion removed from them, leaving much
shorter (and much less revealing) URLs:
$ svn checkout svn://host.example.com/project1 …
If you want inetd to launch the
process, then you need to pass the -i
(--inetd
) option. In the example, we've shown the
output from running svnserve -i
at the
command line, but note that isn't how you actually start the
daemon; see the paragraphs following the example for how to
configure inetd to
start svnserve.
$ svnserve -i ( success ( 1 2 ( ANONYMOUS ) ( edit-pipeline ) ) )
When invoked with the --inetd
option,
svnserve attempts to speak with a
Subversion client via stdin and
stdout using a custom protocol. This is
the standard behavior for a program being run via
inetd. The IANA has reserved port 3690
for the Subversion protocol, so on a Unix-like system you can
add lines to /etc/services
like these (if
they don't already exist):
svn 3690/tcp # Subversion svn 3690/udp # Subversion
And if your system is using a classic Unix-like
inetd daemon, you can add this line to
/etc/inetd.conf
:
svn stream tcp nowait svnowner /usr/bin/svnserve svnserve -i
Make sure “svnowner” is a user which has
appropriate permissions to access your repositories. Now, when
a client connection comes into your server on port 3690,
inetd will spawn an
svnserve process to service it. Of course,
you may also want to add -r
to the
configuration line as well, to restrict which repositories are
exported.
A third way to invoke svnserve is in
“tunnel mode”, with the -t
option. This mode assumes that a remote-service program
such as RSH or SSH has
successfully authenticated a user and is now invoking a
private svnserve process as
that user. (Note that you, the user, will
rarely, if ever, have reason to invoke
svnserve with the -t
at
the command line; instead, the SSH daemon
does so for you.) The svnserve program
behaves normally (communicating via
stdin and stdout),
and assumes that the traffic is being automatically
redirected over some sort of tunnel back to the client.
When svnserve is invoked by a tunnel
agent like this, be sure that the authenticated user has
full read and write access to the repository database files.
It's essentially the same as a local user accessing the
repository via file://
URLs.
This option is described in much more detail in the section called “Tunneling over SSH”.
If your Windows system is a descendant of Windows NT
(2000, 2003, XP, Vista), then you can
run svnserve as a standard Windows
service. This is typically a much nicer experience than
running it as a standalone daemon with the --daemon
(-d)
option. Using daemon-mode requires launching
a console, typing a command, and then leaving the console
window running indefinitely. A Windows service, however,
runs in the background, can start at boot time
automatically, and can be started and stopped using the same
consistent administration interface as other
Windows services.
You'll need to define the new service using the command-line tool SC.EXE. Much like the inetd configuration line, you must specify an exact invocation of svnserve for Windows to run at start-up time:
C:\> sc create svn binpath= "C:\svn\bin\svnserve.exe --service -r C:\repos" displayname= "Subversion Server" depend= Tcpip start= auto
This defines a new Windows service
named “svn”, and which executes a
particular svnserve.exe command when
started (in this case, rooted
at C:\repos
.) There are a number of
caveats in the prior example, however.
First, notice that the svnserve.exe
program must always be invoked with
the --service
option. Any other options to
svnserve must then be specified on the
same line, but you cannot add conflicting options such
as --daemon
(-d)
, --tunnel
, or --inetd
(-i)
. Options such as -r
or --listen-port
are fine, though. Second, be
careful about spaces when invoking
the SC.EXE command: the
key= value
patterns must have no
spaces between key=
and exactly one
space before the value
. Lastly, be
careful about spaces in your command-line to be invoked. If
a directory name contains spaces (or other characters that
need escaping), place the entire inner value
of binpath
in double-quotes, by escaping
them:
C:\> sc create svn binpath= "\"C:\program files\svn\bin\svnserve.exe\" --service -r C:\repos" displayname= "Subversion Server" depend= Tcpip start= auto
Also note that the word binpath
is
misleading—its value is a command
line, not the path to an executable. That's why
you need to surround it with quote marks if it contains
embedded spaces.
Once the service is defined, it can stopped, started, or queried using standard GUI tools (the Services administrative control panel), or at the command line as well:
C:\> net stop svn C:\> net start svn
The service can also be uninstalled (i.e. undefined) by
deleting its definition: sc delete svn
.
Just be sure to stop the service first!
The SC.EXE program has many other
subcommands and options; run sc /?
to
learn more about it.
When a client connects to an svnserve process, the following things happen:
The client selects a specific repository.
The server processes the repository's
conf/svnserve.conf
file, and begins to
enforce any authentication and authorization policies defined
therein.
Depending on the situation and authorization policies,
the client may be allowed to make requests anonymously, without ever receiving an authentication challenge, OR
the client may be challenged for authentication at any time, OR
if operating in “tunnel mode”, the client will declare itself to be already externally authenticated.
At the time of writing, the server only knows how to send a CRAM-MD5 [41] authentication challenge. In essence, the server sends a small amount of data to the client. The client uses the MD5 hash algorithm to create a fingerprint of the data and password combined, then sends the fingerprint as a response. The server performs the same computation with the stored password to verify that the result is identical. At no point does the actual password travel over the network.
It's also possible, of course, for the client to be externally authenticated via a tunnel agent, such as SSH. In that case, the server simply examines the user it's running as, and uses it as the authenticated username. For more on this, see the section called “Tunneling over SSH”.
As you've already guessed, a repository's
svnserve.conf
file is the central
mechanism for controlling authentication and authorization
policies. The file has the same format as other configuration
files (see the section called “Runtime Configuration Area”): section names
are marked by square brackets ([
and
]
), comments begin with hashes
(#
), and each section contains
specific variables that can be set (variable =
value
). Let's walk through these files and learn how
to use them.
For now, the [general]
section of the
svnserve.conf
has all the variables you
need. Begin by changing the values of those variables:
choose a name for a file which will contain your usernames
and passwords, and choose an authentication realm:
[general] password-db = userfile realm = example realm
The realm
is a name that you define.
It tells clients which sort of “authentication
namespace” they're connecting to; the Subversion
client displays it in the authentication prompt, and uses it
as a key (along with the server's hostname and port) for
caching credentials on disk (see the section called “Client Credentials Caching”). The
password-db
variable points to a separate
file that contains a list of usernames and passwords, using
the same familiar format. For example:
[users] harry = foopassword sally = barpassword
The value of password-db
can be an
absolute or relative path to the users file. For many
admins, it's easy to keep the file right in the
conf/
area of the repository, alongside
svnserve.conf
. On the other hand, it's
possible you may want to have two or more repositories share
the same users file; in that case, the file should probably
live in a more public place. The repositories sharing the
users file should also be configured to have the same realm,
since the list of users essentially defines an
authentication realm. Wherever the file lives, be sure to
set the file's read and write permissions appropriately. If
you know which user(s) svnserve will run
as, restrict read access to the user file as necessary.
There are two more variables to set in the
svnserve.conf
file: they determine what
unauthenticated (anonymous) and authenticated users are
allowed to do. The variables anon-access
and auth-access
can be set to the values
none
, read
, or
write
. Setting the value to
none
prohibits both reading and writing;
read
allows read-only access to the
repository, and write
allows complete
read/write access to the repository. For example:
[general] password-db = userfile realm = example realm # anonymous users can only read the repository anon-access = read # authenticated users can both read and write auth-access = write
The example settings are, in fact, the default values of the variables, should you forget to define them. If you want to be even more conservative, you can block anonymous access completely:
[general] password-db = userfile realm = example realm # anonymous users aren't allowed anon-access = none # authenticated users can both read and write auth-access = write
The server process not only understands
these “blanket” access controls to the
repository, but also finer-grained access restrictions placed
on specific files and directories within the repository. To
make use of this feature, you need to define a file containing
more detailed rules, and then set
the authz-db
variable to point to it:
[general] password-db = userfile realm = example realm # Specific access rules for specific locations authz-db = authzfile
The syntax of the authzfile
file is
discussed in detail in
the section called “Path-Based Authorization”. Note
that the authz-db
variable isn't mutually
exclusive with the anon-access
and auth-access
variables; if all the
variables are defined at once, then all
of the rules must be satisfied before access is allowed.
svnserve's built-in authentication can be very handy, because it avoids the need to create real system accounts. On the other hand, some administrators already have well-established SSH authentication frameworks in place. In these situations, all of the project's users already have system accounts and the ability to “SSH into” the server machine.
It's easy to use SSH in conjunction with
svnserve. The client simply uses the
svn+ssh://
URL scheme to connect:
$ whoami harry $ svn list svn+ssh://host.example.com/repos/project harry@host.example.com's password: ***** foo bar baz …
In this example, the Subversion client is invoking a local
ssh process, connecting to
host.example.com
, authenticating as the
user harry
, then spawning a private
svnserve process on the remote machine
running as the user harry
. The
svnserve command is being invoked in tunnel
mode (-t
) and its network protocol is being
“tunneled” over the encrypted connection by
ssh, the tunnel-agent.
svnserve is aware that it's running as the
user harry
, and if the client performs a
commit, the authenticated username will be used as the
author of the new revision.
The important thing to understand here is that the Subversion client is not connecting to a running svnserve daemon. This method of access doesn't require a daemon, nor does it notice one if present. It relies wholly on the ability of ssh to spawn a temporary svnserve process, which then terminates when the network connection is closed.
When using svn+ssh://
URLs to access a
repository, remember that it's the ssh
program prompting for authentication, and
not the svn client
program. That means there's no automatic password caching
going on (see the section called “Client Credentials Caching”). The
Subversion client often makes multiple connections to the
repository, though users don't normally notice this due to the
password caching feature. When using
svn+ssh://
URLs, however, users may be
annoyed by ssh repeatedly asking for a
password for every outbound connection. The solution is to
use a separate SSH password-caching tool like
ssh-agent on a Unix-like system, or
pageant on Windows.
When running over a tunnel, authorization is primarily
controlled by operating system permissions to the repository's
database files; it's very much the same as if Harry were
accessing the repository directly via a
file://
URL. If multiple system users are
going to be accessing the repository directly, you may want to
place them into a common group, and you'll need to be careful
about umasks. (Be sure to read the section called “Supporting Multiple Repository Access Methods”.) But even in the case of
tunneling, the svnserve.conf
file can
still be used to block access, by simply setting
auth-access = read
or auth-access
= none
.
[42]
You'd think that the story of SSH tunneling would end
here, but it doesn't. Subversion allows you to create custom
tunnel behaviors in your run-time config
file (see the section called “Runtime Configuration Area”). For example,
suppose you want to use RSH instead of SSH[43]. In the
[tunnels]
section of your
config
file, simply define it like
this:
[tunnels] rsh = rsh
And now, you can use this new tunnel definition by using a
URL scheme that matches the name of your new variable:
svn+rsh://host/path
. When using the new
URL scheme, the Subversion client will actually be running the
command rsh host svnserve -t behind the
scenes. If you include a username in the URL (for example,
svn+rsh://username@host/path
) the client
will also include that in its command (rsh
username@host svnserve -t). But you can define new
tunneling schemes to be much more clever than that:
[tunnels] joessh = $JOESSH /opt/alternate/ssh -p 29934
This example demonstrates a couple of things. First, it
shows how to make the Subversion client launch a very specific
tunneling binary (the one located at
/opt/alternate/ssh
) with specific
options. In this case, accessing a
svn+joessh://
URL would invoke the
particular SSH binary with -p 29934
as
arguments—useful if you want the tunnel program to
connect to a non-standard port.
Second, it shows how to define a custom environment
variable that can override the name of the tunneling program.
Setting the SVN_SSH
environment variable is
a convenient way to override the default SSH tunnel agent.
But if you need to have several different overrides for
different servers, each perhaps contacting a different port or
passing a different set of options to SSH, you can use the
mechanism demonstrated in this example. Now if we were to set
the JOESSH
environment variable, its value
would override the entire value of the tunnel
variable—$JOESSH would be executed
instead of /opt/alternate/ssh -p
29934.
It's not only possible to control the way in which the client invokes ssh, but also to control the behavior of sshd on your server machine. In this section, we'll show how to control the exact svnserve command executed by sshd, as well as how to have multiple users share a single system account.
To begin, locate the home directory of the account
you'll be using to launch svnserve. Make
sure the account has an SSH public/private keypair
installed, and that the user can log in via public-key
authentication. Password authentication will not work,
since all of the following SSH tricks revolve around using
the SSH authorized_keys
file.
If it doesn't already exist, create the
authorized_keys
file (on Unix,
typically ~/.ssh/authorized_keys
).
Each line in this file describes a public key that is
allowed to connect. The lines are typically of the
form:
ssh-dsa AAAABtce9euch… user@example.com
The first field describes the type of key, the second
field is the base64-encoded key itself, and the third field
is a comment. However, it's a lesser known fact that the
entire line can be preceded by a command
field:
command="program" ssh-dsa AAAABtce9euch… user@example.com
When the command
field is set, the
SSH daemon will run the named program instead of the
typical svnserve -t invocation that the
Subversion client asks for. This opens the door to a number
of server-side tricks. In the following examples, we
abbreviate the lines of the file as:
command="program" TYPE KEY COMMENT
Because we can specify the executed server-side command, it's easy to name a specific svnserve binary to run and to pass it extra arguments:
command="/path/to/svnserve -t -r /virtual/root" TYPE KEY COMMENT
In this example, /path/to/svnserve
might be a custom wrapper script
around svnserve which sets the umask (see
the section called “Supporting Multiple Repository Access Methods”). It also shows how to
anchor svnserve in a virtual root
directory, just as one often does when
running svnserve as a daemon process.
This might be done either to restrict access to parts of the
system, or simply to relieve the user of having to type an
absolute path in the svn+ssh://
URL.
It's also possible to have multiple users share a single
account. Instead of creating a separate system account for
each user, generate a public/private keypair for each
person. Then place each public key into
the authorized_users
file, one per
line, and use the --tunnel-user
option:
command="svnserve -t --tunnel-user=harry" TYPE1 KEY1 harry@example.com command="svnserve -t --tunnel-user=sally" TYPE2 KEY2 sally@example.com
This example allows both Harry and Sally to connect to
the same account via public-key authentication. Each of
them has a custom command that will be executed;
the --tunnel-user
option
tells svnserve -t to assume that the named
argument is the authenticated user. Without
--tunnel-user
, it would appear as though
all commits were coming from the one shared system
account.
A final word of caution: giving a user access to the
server via public-key in a shared account might still allow
other forms of SSH access, even if you've set
the command
value
in authorized_keys
. For example, the
user may still get shell access through SSH, or be able to
perform X11 or general port-forwarding through your server.
To give the user as little permission as possible, you may
want to specify a number of restrictive options immediately
after the command
:
command="svnserve -t --tunnel-user=harry",no-port-forwarding,\ no-agent-forwarding,no-X11-forwarding,no-pty \ TYPE1 KEY1 harry@example.com
The Apache HTTP Server is a “heavy duty” network server that Subversion can leverage. Via a custom module, httpd makes Subversion repositories available to clients via the WebDAV/DeltaV protocol, which is an extension to HTTP 1.1 (see http://www.webdav.org/ for more information). This protocol takes the ubiquitous HTTP protocol that is the core of the World Wide Web, and adds writing—specifically, versioned writing—capabilities. The result is a standardized, robust system that is conveniently packaged as part of the Apache 2.0 software, is supported by numerous operating systems and third-party products, and doesn't require network administrators to open up yet another custom port. [44] While an Apache-Subversion server has more features than svnserve, it's also a bit more difficult to set up. With flexibility often comes more complexity.
Much of the following discussion includes references to Apache configuration directives. While some examples are given of the use of these directives, describing them in full is outside the scope of this chapter. The Apache team maintains excellent documentation, publicly available on their website at http://httpd.apache.org. For example, a general reference for the configuration directives is located at http://httpd.apache.org/docs-2.0/mod/directives.html.
Also, as you make changes to your Apache setup, it is likely
that somewhere along the way a mistake will be made. If you are
not already familiar with Apache's logging subsystem, you should
become aware of it. In your httpd.conf
file are directives that specify the on-disk locations of the
access and error logs generated by Apache (the
CustomLog
and ErrorLog
directives, respectively). Subversion's mod_dav_svn uses
Apache's error logging interface as well. You can always browse
the contents of those files for information that might reveal
the source of a problem that is not clearly noticeable
otherwise.
To network your repository over HTTP, you basically need four components, available in two packages. You'll need Apache httpd 2.0, the mod_dav DAV module that comes with it, Subversion, and the mod_dav_svn filesystem provider module distributed with Subversion. Once you have all of those components, the process of networking your repository is as simple as:
getting httpd 2.0 up and running with the mod_dav module,
installing the mod_dav_svn plugin to mod_dav, which uses Subversion's libraries to access the repository, and
configuring your httpd.conf
file to export (or expose) the repository.
You can accomplish the first two items either by
compiling httpd and Subversion from
source code, or by installing pre-built binary packages of
them on your system. For the most up-to-date information on
how to compile Subversion for use with the Apache HTTP Server,
as well as how to compile and configure Apache itself for
this purpose, see the INSTALL
file in
the top level of the Subversion source code tree.
Once you have all the necessary components installed on
your system, all that remains is the configuration of Apache
via its httpd.conf
file. Instruct Apache
to load the mod_dav_svn module using the
LoadModule
directive. This directive must
precede any other Subversion-related configuration items. If
your Apache was installed using the default layout, your
mod_dav_svn module should have been
installed in the modules
subdirectory of
the Apache install location (often
/usr/local/apache2
). The
LoadModule
directive has a simple syntax,
mapping a named module to the location of a shared library on
disk:
LoadModule dav_svn_module modules/mod_dav_svn.so
Note that if mod_dav was compiled as a
shared object (instead of statically linked directly to the
httpd binary), you'll need a similar
LoadModule
statement for it, too. Be sure
that it comes before the mod_dav_svn line:
LoadModule dav_module modules/mod_dav.so LoadModule dav_svn_module modules/mod_dav_svn.so
At a later location in your configuration file, you now
need to tell Apache where you keep your Subversion repository
(or repositories). The Location
directive
has an XML-like notation, starting with an opening tag, and
ending with a closing tag, with various other configuration
directives in the middle. The purpose of the
Location
directive is to instruct Apache to
do something special when handling requests that are directed
at a given URL or one of its children. In the case of
Subversion, you want Apache to simply hand off support for
URLs that point at versioned resources to the DAV layer. You
can instruct Apache to delegate the handling of all URLs whose
path portions (the part of the URL that follows the server's
name and the optional port number) begin with
/repos/
to a DAV provider whose
repository is located at
/absolute/path/to/repository
using the
following httpd.conf
syntax:
<Location /repos> DAV svn SVNPath /absolute/path/to/repository </Location>
If you plan to support multiple Subversion repositories
that will reside in the same parent directory on your local
disk, you can use an alternative directive, the
SVNParentPath
directive, to indicate that
common parent directory. For example, if you know you will be
creating multiple Subversion repositories in a directory
/usr/local/svn
that would be accessed via
URLs like http://my.server.com/svn/repos1
,
http://my.server.com/svn/repos2
, and
so on, you could use the httpd.conf
configuration syntax in the following example:
<Location /svn> DAV svn # any "/svn/foo" URL will map to a repository /usr/local/svn/foo SVNParentPath /usr/local/svn </Location>
Using the previous syntax, Apache will delegate the
handling of all URLs whose path portions begin with
/svn/
to the Subversion DAV provider,
which will then assume that any items in the directory
specified by the SVNParentPath
directive
are actually Subversion repositories. This is a particularly
convenient syntax in that, unlike the use of the
SVNPath
directive, you don't have to
restart Apache in order to create and network new
repositories.
Be sure that when you define your new
Location
, it doesn't overlap with other
exported Locations. For example, if your main
DocumentRoot
is exported to
/www
, do not export a Subversion
repository in <Location /www/repos>
.
If a request comes in for the URI
/www/repos/foo.c
, Apache won't know
whether to look for a file repos/foo.c
in
the DocumentRoot
, or whether to delegate
mod_dav_svn to return
foo.c
from the Subversion repository.
The result is often an error from the server of the form
301 Moved Permanently
.
At this stage, you should strongly consider the question of permissions. If you've been running Apache for some time now as your regular web server, you probably already have a collection of content—web pages, scripts and such. These items have already been configured with a set of permissions that allows them to work with Apache, or more appropriately, that allows Apache to work with those files. Apache, when used as a Subversion server, will also need the correct permissions to read and write to your Subversion repository.
You will need to determine a permission system setup that
satisfies Subversion's requirements without messing up any
previously existing web page or script installations. This
might mean changing the permissions on your Subversion
repository to match those in use by other things that Apache
serves for you, or it could mean using the
User
and Group
directives in httpd.conf
to specify that
Apache should run as the user and group that owns your
Subversion repository. There is no single correct way to set
up your permissions, and each administrator will have
different reasons for doing things a certain way. Just be
aware that permission-related problems are perhaps the most
common oversight when configuring a Subversion repository for
use with Apache.
At this point, if you configured
httpd.conf
to contain something like
<Location /svn> DAV svn SVNParentPath /usr/local/svn </Location>
…then your repository is “anonymously”
accessible to the world. Until you configure some
authentication and authorization policies, the Subversion
repositories you make available via the
Location
directive will be generally
accessible to everyone. In other words,
anyone can use their Subversion client to check out a working copy of a repository URL (or any of its subdirectories),
anyone can interactively browse the repository's latest revision simply by pointing their web browser to the repository URL, and
anyone can commit to the repository.
Of course, you might have already set up
a pre-commit
hook script to prevent
commits (see the section called “Implementing Repository Hooks”).
But as you read on, you'll see that it's also possible use
Apache's built-in methods to restrict access in specific
ways.
The easiest way to authenticate a client is via the HTTP Basic authentication mechanism, which simply uses a username and password to verify that a user is who she says she is. Apache provides an htpasswd utility for managing the list of acceptable usernames and passwords. Let's grant commit access to Sally and Harry. First, we need to add them to the password file.
$ ### First time: use -c to create the file $ ### Use -m to use MD5 encryption of the password, which is more secure $ htpasswd -cm /etc/svn-auth-file harry New password: ***** Re-type new password: ***** Adding password for user harry $ htpasswd -m /etc/svn-auth-file sally New password: ******* Re-type new password: ******* Adding password for user sally $
Next, you need to add some more
httpd.conf
directives inside your
Location
block to tell Apache what to do
with your new password file. The
AuthType
directive specifies the type of
authentication system to use. In this case, we want to
specify the Basic
authentication system.
AuthName
is an arbitrary name that you
give for the authentication domain. Most browsers will
display this name in the pop-up dialog box when the browser
is querying the user for his name and password. Finally,
use the AuthUserFile
directive to specify
the location of the password file you created using
htpasswd.
After adding these three directives, your
<Location>
block should look
something like this:
<Location /svn> DAV svn SVNParentPath /usr/local/svn AuthType Basic AuthName "Subversion repository" AuthUserFile /etc/svn-auth-file </Location>
This <Location>
block is not
yet complete, and will not do anything useful. It's merely
telling Apache that whenever authorization is required,
Apache should harvest a username and password from the
Subversion client. What's missing here, however, are
directives that tell Apache which sorts
of client requests require authorization. Wherever
authorization is required, Apache will demand
authentication as well. The simplest thing to do is protect
all requests. Adding Require valid-user
tells Apache that all requests require an authenticated
user:
<Location /svn> DAV svn SVNParentPath /usr/local/svn AuthType Basic AuthName "Subversion repository" AuthUserFile /etc/svn-auth-file Require valid-user </Location>
Be sure to read the next section (the section called “Authorization Options”) for more detail on the
Require
directive and other ways to set
authorization policies.
One word of warning: HTTP Basic Auth passwords pass in
very nearly plain-text over the network, and thus are
extremely insecure. If you're worried about password
snooping, it may be best to use some sort of SSL encryption,
so that clients authenticate via https://
instead of http://
; at a bare minimum,
you can configure Apache to use a self-signed server
certificate.
[45]
Consult Apache's documentation (and OpenSSL documentation)
about how to do that.
Businesses that need to expose their repositories for access outside the company firewall should be conscious of the possibility that unauthorized parties could be “sniffing” their network traffic. SSL makes that kind of unwanted attention less likely to result in sensitive data leaks.
If a Subversion client is compiled to use OpenSSL, then
it gains the ability to speak to an Apache server via
https://
URLs. The Neon library used by
the Subversion client is not only able to verify server
certificates, but can also supply client certificates when
challenged. When the client and server have exchanged SSL
certificates and successfully authenticated one another, all
further communication is encrypted via a session key.
It's beyond the scope of this book to describe how to generate client and server certificates, and how to configure Apache to use them. Many other books, including Apache's own documentation, describe this task. But what can be covered here is how to manage server and client certificates from an ordinary Subversion client.
When speaking to Apache via https://
,
a Subversion client can receive two different types of
information:
a server certificate
a demand for a client certificate
If the client receives a server certificate, it needs to verify that it trusts the certificate: is the server really who it claims to be? The OpenSSL library does this by examining the signer of the server certificate, or certifying authority (CA). If OpenSSL is unable to automatically trust the CA, or if some other problem occurs (such as an expired certificate or hostname mismatch), the Subversion command-line client will ask you whether you want to trust the server certificate anyway:
$ svn list https://host.example.com/repos/project Error validating server certificate for 'https://host.example.com:443': - The certificate is not issued by a trusted authority. Use the fingerprint to validate the certificate manually! Certificate information: - Hostname: host.example.com - Valid: from Jan 30 19:23:56 2004 GMT until Jan 30 19:23:56 2006 GMT - Issuer: CA, example.com, Sometown, California, US - Fingerprint: 7d:e1:a9:34:33:39:ba:6a:e9:a5:c4:22:98:7b:76:5c:92:a0:9c:7b (R)eject, accept (t)emporarily or accept (p)ermanently?
This dialogue should look familiar; it's essentially the
same question you've probably seen coming from your web
browser (which is just another HTTP client like Subversion).
If you choose the (p)ermanent option, the server certificate
will be cached in your private run-time
auth/
area in just the same way your
username and password are cached (see the section called “Client Credentials Caching”). If cached,
Subversion will automatically trust this certificate
in future negotiations.
Your run-time servers
file also gives
you the ability to make your Subversion client automatically
trust specific CAs, either globally or on a per-host basis.
Simply set the ssl-authority-files
variable to a semicolon-separated list of PEM-encoded CA
certificates:
[global] ssl-authority-files = /path/to/CAcert1.pem;/path/to/CAcert2.pem
Many OpenSSL installations also have a pre-defined set
of “default” CAs that are nearly universally
trusted. To make the Subversion client automatically trust
these standard authorities, set the
ssl-trust-default-ca
variable to
true
.
When talking to Apache, a Subversion client might also receive a challenge for a client certificate. Apache is asking the client to identify itself: is the client really who it says it is? If all goes correctly, the Subversion client sends back a private certificate signed by a CA that Apache trusts. A client certificate is usually stored on disk in encrypted format, protected by a local password. When Subversion receives this challenge, it will ask you for both a path to the certificate and the password which protects it:
$ svn list https://host.example.com/repos/project Authentication realm: https://host.example.com:443 Client certificate filename: /path/to/my/cert.p12 Passphrase for '/path/to/my/cert.p12': ******** …
Notice that the client certificate is a “p12” file. To use a client certificate with Subversion, it must be in PKCS#12 format, which is a portable standard. Most web browsers are already able to import and export certificates in that format. Another option is to use the OpenSSL command-line tools to convert existing certificates into PKCS#12.
Again, the runtime servers
file
allows you to automate this challenge on a per-host basis.
Either or both pieces of information can be described in
runtime variables:
[groups] examplehost = host.example.com [examplehost] ssl-client-cert-file = /path/to/my/cert.p12 ssl-client-cert-password = somepassword
Once you've set the
ssl-client-cert-file
and
ssl-client-cert-password
variables, the
Subversion client can automatically respond to a client
certificate challenge without prompting you.
[46]
At this point, you've configured authentication, but not authorization. Apache is able to challenge clients and confirm identities, but it has not been told how to allow or restrict access to the clients bearing those identities. This section describes two strategies for controlling access to your repositories.
The simplest form of access control is to authorize certain users for either read-only access to a repository, or read/write access to a repository.
You can restrict access on all repository operations by
adding the Require valid-user
directive
to your <Location>
block. Using
our previous example, this would mean that only clients that
claimed to be either harry
or
sally
, and provided the correct
password for their respective username, would be allowed to
do anything with the Subversion repository:
<Location /svn> DAV svn SVNParentPath /usr/local/svn # how to authenticate a user AuthType Basic AuthName "Subversion repository" AuthUserFile /path/to/users/file # only authenticated users may access the repository Require valid-user </Location>
Sometimes you don't need to run such a tight ship. For
example, Subversion's own source code repository at
http://svn.collab.net/repos/svn allows anyone
in the world to perform read-only repository tasks (like
checking out working copies and browsing the repository with
a web browser), but restricts all write operations to
authenticated users. To do this type of selective
restriction, you can use the Limit
and
LimitExcept
configuration directives.
Like the Location
directive, these blocks
have starting and ending tags, and you would nest them
inside your <Location>
block.
The parameters present on the Limit
and LimitExcept
directives are HTTP
request types that are affected by that block. For example,
if you wanted to disallow all access to your repository
except the currently supported read-only operations, you
would use the LimitExcept
directive,
passing the GET
,
PROPFIND
, OPTIONS
, and
REPORT
request type parameters. Then the
previously mentioned Require valid-user
directive would be placed inside the
<LimitExcept>
block instead of just
inside the <Location>
block.
<Location /svn> DAV svn SVNParentPath /usr/local/svn # how to authenticate a user AuthType Basic AuthName "Subversion repository" AuthUserFile /path/to/users/file # For any operations other than these, require an authenticated user. <LimitExcept GET PROPFIND OPTIONS REPORT> Require valid-user </LimitExcept> </Location>
These are only a few simple examples. For more in-depth
information about Apache access control and the
Require
directive, take a look at the
Security
section of the Apache
documentation's tutorials collection at http://httpd.apache.org/docs-2.0/misc/tutorials.html.
It's possible to set up finer-grained permissions using a second Apache httpd module, mod_authz_svn. This module grabs the various opaque URLs passing from client to server, asks mod_dav_svn to decode them, and then possibly vetoes requests based on access policies defined in a configuration file.
If you've built Subversion from source code,
mod_authz_svn is automatically built
and installed alongside mod_dav_svn.
Many binary distributions install it automatically as well.
To verify that it's installed correctly, make sure it comes
right after mod_dav_svn's
LoadModule
directive in
httpd.conf
:
LoadModule dav_module modules/mod_dav.so LoadModule dav_svn_module modules/mod_dav_svn.so LoadModule authz_svn_module modules/mod_authz_svn.so
To activate this module, you need to configure your
Location
block to use the
AuthzSVNAccessFile
directive, which
specifies a file containing the permissions policy for paths
within your repositories. (In a moment, we'll discuss the
format of that file.)
Apache is flexible, so you have the option to configure your block in one of three general patterns. To begin, choose one of these basic configuration patterns. (The examples below are very simple; look at Apache's own documentation for much more detail on Apache authentication and authorization options.)
The simplest block is to allow open access to everyone. In this scenario, Apache never sends authentication challenges, so all users are treated as “anonymous”.
Example 6.1. A sample configuration for anonymous access.
<Location /repos> DAV svn SVNParentPath /usr/local/svn # our access control policy AuthzSVNAccessFile /path/to/access/file </Location>
On the opposite end of the paranoia scale, you can
configure your block to demand authentication from everyone.
All clients must supply credentials to identify themselves.
Your block unconditionally requires authentication via the
Require valid-user
directive, and defines
a means to authenticate.
Example 6.2. A sample configuration for authenticated access.
<Location /repos> DAV svn SVNParentPath /usr/local/svn # our access control policy AuthzSVNAccessFile /path/to/access/file # only authenticated users may access the repository Require valid-user # how to authenticate a user AuthType Basic AuthName "Subversion repository" AuthUserFile /path/to/users/file </Location>
A third very popular pattern is to allow a combination
of authenticated and anonymous access. For example, many
administrators want to allow anonymous users to read certain
repository directories, but want only authenticated users to
read (or write) more sensitive areas. In this setup, all
users start out accessing the repository anonymously. If
your access control policy demands a real username at any
point, Apache will demand authentication from the client.
To do this, you use both the Satisfy Any
and Require valid-user
directives
together.
Example 6.3. A sample configuration for mixed authenticated/anonymous access.
<Location /repos> DAV svn SVNParentPath /usr/local/svn # our access control policy AuthzSVNAccessFile /path/to/access/file # try anonymous access first, resort to real # authentication if necessary. Satisfy Any Require valid-user # how to authenticate a user AuthType Basic AuthName "Subversion repository" AuthUserFile /path/to/users/file </Location>
Once you've settled on one of these three
basic httpd.conf
templates, you need to
create your file containing access rules for particular
paths within the repository. This is described in
the section called “Path-Based Authorization”.
The mod_dav_svn module goes through a lot of work to make sure that data you've marked “unreadable” doesn't get accidentally leaked. This means that it needs to closely monitor all of the paths and file-contents returned by commands like svn checkout or svn update commands. If these commands encounter a path that isn't readable according to some authorization policy, then the path is typically omitted altogether. In the case of history or rename tracing—e.g. running a command like svn cat -r OLD foo.c on a file that was renamed long ago—the rename tracking will simply halt if one of the object's former names is determined to be read-restricted.
All of this path-checking can sometimes be quite
expensive, especially in the case of svn
log. When retrieving a list of revisions, the server
looks at every changed path in each revision and checks it
for readability. If an unreadable path is discovered, then
it's omitted from the list of the revision's changed paths
(normally seen with the --verbose
option),
and the whole log message is suppressed. Needless to say,
this can be time-consuming on revisions that affect a large
number of files. This is the cost of security: even if you
haven't configured a module like
mod_authz_svn at all, the
mod_dav_svn module is still asking Apache
httpd to run authorization checks on
every path. The mod_dav_svn module has
no idea what authorization modules have been installed, so
all it can do is ask Apache to invoke whatever might be
present.
On the other hand, there's also an escape-hatch of
sorts, one which allows you to trade security features for
speed. If you're not enforcing any sort of per-directory
authorization (i.e. not using
mod_authz_svn or similar module), then
you can disable all of this path-checking. In your
httpd.conf
file, use the
SVNPathAuthz
directive:
Example 6.4. Disabling path checks altogether
<Location /repos> DAV svn SVNParentPath /usr/local/svn SVNPathAuthz off </Location>
The SVNPathAuthz
directive is “on” by
default. When set “off”, all path-based
authorization checking is disabled;
mod_dav_svn stops invoking authorization
checks on every path it discovers.
We've covered most of the authentication and authorization options for Apache and mod_dav_svn. But there are a few other nice features that Apache provides.
One of the most useful benefits of an Apache/WebDAV
configuration for your Subversion repository is that the
youngest revisions of your versioned files and directories
are immediately available for viewing via a regular web
browser. Since Subversion uses URLs to identify versioned
resources, those URLs used for HTTP-based repository access
can be typed directly into a Web browser. Your browser will
issue an HTTP GET
request for that URL, and
based on whether that URL represents a versioned directory
or file, mod_dav_svn will respond with a directory listing
or with file contents.
Since the URLs do not contain any information about which version of the resource you wish to see, mod_dav_svn will always answer with the youngest version. This functionality has the wonderful side-effect that you can pass around Subversion URLs to your peers as references to documents, and those URLs will always point at the latest manifestation of that document. Of course, you can even use the URLs as hyperlinks from other web sites, too.
When browsing a Subversion repository, the web browser
gets a clue about how to render a file's contents by
looking at the Content-Type:
header
returned in Apache's response to the
HTTP GET
request. The value of this
header is some sort of MIME type. By default, Apache will
tell the web browsers that all repository files are of
the “default” MIME type,
typically text/plain
. This can be
frustrating, however, if a user wishes repository files to
render as something more meaningful—for example,
it might be nice to have a foo.html
file
in the repository actually render as HTML when
browsing.
To make this happen, you only need to make sure that
your files have the
proper svn:mime-type
set. This is
discussed in more detail in
the section called “File Content Type”,
and you can even configure your client to automatically
attach proper svn:mime-type
properties
to files entering the repository for the first time; see
the section called “Automatic Property Setting”.
So in our example, if one were to set
the svn:mime-type
property
to text/html
on
file foo.html
, then Apache would
properly tell your web browser to render the file as
HTML. One could also attach
proper image/*
mime-type properties to
images, and by doing this, ultimately get an entire web
site to be viewable directly from a repository! There's
generally no problem with doing this, as long as the
website doesn't contain any dynamically-generated
content.
You generally will get more use out of URLs to
versioned files—after all, that's where the
interesting content tends to lie. But you might have
occasion to browse a Subversion directory listing, where
you'll quickly note that the generated HTML used to
display that listing is very basic, and certainly not
intended to be aesthetically pleasing (or even
interesting). To enable customization of these directory
displays, Subversion provides an XML index feature. A
single SVNIndexXSLT
directive in your
repository's Location
block of
httpd.conf
will instruct mod_dav_svn
to generate XML output when displaying a directory
listing, and to reference the XSLT stylesheet of your
choice:
<Location /svn> DAV svn SVNParentPath /usr/local/svn SVNIndexXSLT "/svnindex.xsl" … </Location>
Using the SVNIndexXSLT
directive and
a creative XSLT stylesheet, you can make your directory
listings match the color schemes and imagery used in other
parts of your website. Or, if you'd prefer, you can use
the sample stylesheets provided in the Subversion source
distribution's tools/xslt/
directory.
Keep in mind that the path provided to the
SVNIndexXSLT
directory is actually a URL
path—browsers need to be able to read your
stylesheets in order to make use of them!
If you're serving a collection of repositories from a
single URL via the SVNParentPath
directive, then it's also possible to have Apache display
all available repositories to a web browser. Just
activate the SVNListParentPath
directive:
<Location /svn> DAV svn SVNParentPath /usr/local/svn SVNListParentPath on … </Location>
If a user now points her web browser to the
URL http://host.example.com/svn/
, she'll
see list of all Subversion repositories sitting
in /usr/local/svn
. Obviously, this can
be a security problem, so this feature is turned off by
default.
Because Apache is an HTTP server at heart, it contains
fantastically flexible logging features. It's beyond the
scope of this book to discuss all ways logging can be
configured, but we should point out that even the most
generic httpd.conf
file will cause
Apache to produce two logs:
error_log
and access_log
. These logs may appear
in different places, but are typically created in the
logging area of your Apache installation. (On Unix, they
often live
in /usr/local/apache2/logs/
.)
The error_log
describes any internal
errors that Apache runs into as it works.
The access_log
file records every
incoming HTTP request received by Apache. This makes it
easy to see, for example, which IP addresses Subversion
clients are coming from, how often particular clients use
the server, which users are authenticating properly, and
which requests succeed or fail.
Unfortunately, because HTTP is a stateless protocol,
even the simplest Subversion client operation generates
multiple network requests. It's very difficult to look at
the access_log
and deduce what the
client was doing—most operations look like a series
of cryptic PROPPATCH
, GET
,
PUT
, and REPORT
requests. To make things worse, many client operations send
nearly-identical series of requests, so it's even harder to
tell them apart.
mod_dav_svn
, however, can come to
your aid. By activating an “operational
logging” feature, you can
ask mod_dav_svn
to create a separate log
file describing what sort of high-level operations your
clients are performing.
To do this, you need to make use of
Apache's CustomLog
directive (which is
explained in more detail in Apache's own documentation).
Be sure to invoke this
directive outside of your
Subversion Location
block:
<Location /svn> DAV svn … </Location> CustomLog logs/svn_logfile "%t %u %{SVN-ACTION}e" env=SVN-ACTION
In this example, we're asking Apache to create a special
logfile svn_logfile
in the standard
Apache logs
directory.
The %t
and %u
variables are replaced by the time and username of the
request, respectively. The really important part are the
two instances of SVN-ACTION
.
When Apache sees that variable, it substitutes the value of
the SVN-ACTION
environment variable,
which is automatically set by mod_dav_svn
whenever it detects a high-level client action.
So instead of having to interpret a
traditional access_log
like
this:
[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/vcc/default HTTP/1.1" 207 398 [26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/bln/59 HTTP/1.1" 207 449 [26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc HTTP/1.1" 207 647 [26/Jan/2007:22:25:29 -0600] "REPORT /svn/calc/!svn/vcc/default HTTP/1.1" 200 607 [26/Jan/2007:22:25:31 -0600] "OPTIONS /svn/calc HTTP/1.1" 200 188 [26/Jan/2007:22:25:31 -0600] "MKACTIVITY /svn/calc/!svn/act/e6035ef7-5df0-4ac0-b811-4be7c823f998 HTTP/1.1" 201 227 …
… you can instead peruse a much more
intelligible svn_logfile
like this:
[26/Jan/2007:22:24:20 -0600] - list-dir '/' [26/Jan/2007:22:24:27 -0600] - update '/' [26/Jan/2007:22:25:29 -0600] - remote-status '/' [26/Jan/2007:22:25:31 -0600] sally commit r60
Several of the features already provided by Apache in
its role as a robust Web server can be leveraged for
increased functionality or security in Subversion as well.
Subversion communicates with Apache using Neon, which is a
generic HTTP/WebDAV library with support for such mechanisms
as SSL (the Secure Socket Layer, discussed earlier). If
your Subversion client is built to support SSL, then it can
access your Apache server
using https://
.
Equally useful are other features of the Apache and Subversion relationship, such as the ability to specify a custom port (instead of the default HTTP port 80) or a virtual domain name by which the Subversion repository should be accessed, or the ability to access the repository through an HTTP proxy. These things are all supported by Neon, so Subversion gets that support for free.
Finally, because mod_dav_svn is speaking a subset of the WebDAV/DeltaV protocol, it's possible to access the repository via third-party DAV clients. Most modern operating systems (Win32, OS X, and Linux) have the built-in ability to mount a DAV server as a standard network share. This is a complicated topic; for details, read Appendix C, WebDAV and Autoversioning.
Both Apache and svnserve are capable of granting (or denying) permissions to users. Typically this is done over the entire repository: a user can read the repository (or not), and she can write to the repository (or not). It's also possible, however, to define finer-grained access rules. One set of users may have permission to write to a certain directory in the repository, but not others; another directory might not even be readable by all but a few special people.
Both servers use a common file format to describe these
path-based access rules. In the case of Apache, one needs to
load the mod_authz_svn module and then add
the AuthzSVNAccessFile
directive (within
the httpd.conf
file) pointing to your own
rules-file. (For a full explanation, see
the section called “Per-Directory Access Control”.) If
you're using svnserve, then you need to make
the authz-db
variable
(within svnserve.conf
) point to your
rules-file.
Once your server knows where to find your rules-file, it's time to define the rules.
The syntax of the file is the same familiar one used
by svnserve.conf and the runtime
configuration files. Lines that start with a hash
(#
) are ignored. In its simplest form, each
section names a repository and path within it, and the
authenticated usernames are the option names within each
section. The value of each option describes the user's level of
access to the repository path: either
r
(read-only) or rw
(read-write). If the user is not mentioned at all, no access is
allowed.
To be more specific: the value of the section-names are
either of the form [repos-name:path]
or the
form [path]
. If you're using the
SVNParentPath
directive, then it's important
to specify the repository names in your sections. If you omit
them, then a section like
[/some/dir]
will match the path
/some/dir
in every
repository. If you're using the SVNPath
directive, however, then it's fine to only define paths in your
sections—after all, there's only one repository.
[calc:/branches/calc/bug-142] harry = rw sally = r
In this first example, the user harry
has
full read and write access on the
/branches/calc/bug-142
directory in the
calc
repository, but the user
sally
has read-only access. Any other users
are blocked from accessing this directory.
Of course, permissions are inherited from parent to child directory. That means that we can specify a subdirectory with a different access policy for Sally:
[calc:/branches/calc/bug-142] harry = rw sally = r # give sally write access only to the 'testing' subdir [calc:/branches/calc/bug-142/testing] sally = rw
Now Sally can write to the testing
subdirectory of the branch, but can still only read other parts.
Harry, meanwhile, continues to have complete read-write access
to the whole branch.
It's also possible to explicitly deny permission to someone via inheritance rules, by setting the username variable to nothing:
[calc:/branches/calc/bug-142] harry = rw sally = r [calc:/branches/calc/bug-142/secret] harry =
In this example, Harry has read-write access to the
entire bug-142
tree, but has absolutely no
access at all to the secret
subdirectory
within it.
The thing to remember is that the most specific path always matches first. The server tries to match the path itself, and then the parent of the path, then the parent of that, and so on. The net effect is that mentioning a specific path in the accessfile will always override any permissions inherited from parent directories.
By default, nobody has any access to the repository at all.
That means that if you're starting with an empty file, you'll
probably want to give at least read permission to all users at
the root of the repository. You can do this by using the
asterisk variable (*
), which means “all
users”:
[/] * = r
This is a common setup; notice that there's no repository
name mentioned in the section name. This makes all repositories
world readable to all users. Once all users have read-access to
the repositories, you can give explicit
rw
permission to certain users on specific
subdirectories within specific repositories.
The asterisk variable (*
) is also worth
special mention here: it's the
only pattern which matches an anonymous
user. If you've configured your server block to allow a mixture
of anonymous and authenticated access, all users start out
accessing anonymously. The server looks for a
*
value defined for the path being accessed;
if it can't find one, then it demands real authentication from
the client.
The access file also allows you to define whole groups of
users, much like the Unix /etc/group
file:
[groups] calc-developers = harry, sally, joe paint-developers = frank, sally, jane everyone = harry, sally, joe, frank, sally, jane
Groups can be granted access control just like users.
Distinguish them with an “at”
(@
) prefix:
[calc:/projects/calc] @calc-developers = rw [paint:/projects/paint] @paint-developers = rw jane = r
Groups can also be defined to contain other groups:
[groups] calc-developers = harry, sally, joe paint-developers = frank, sally, jane everyone = @calc-developers, @paint-developers
You've seen how a repository can be accessed in many different ways. But is it possible—or safe—for your repository to be accessed by multiple methods simultaneously? The answer is yes, provided you use a bit of foresight.
At any given time, these processes may require read and write access to your repository:
regular system users using a Subversion client (as
themselves) to access the repository directly via
file://
URLs;
regular system users connecting to SSH-spawned private svnserve processes (running as themselves) which access the repository;
an svnserve process—either a daemon or one launched by inetd—running as a particular fixed user;
an Apache httpd process, running as a particular fixed user.
The most common problem administrators run into is repository
ownership and permissions. Does every process (or user) in the
previous list have the rights to read and write the Berkeley DB
files? Assuming you have a Unix-like operating system, a
straightforward approach might be to place every potential
repository user into a new svn
group, and
make the repository wholly owned by that group. But even that's
not enough, because a process may write to the database files
using an unfriendly umask—one that prevents access by
other users.
So the next step beyond setting up a common group for
repository users is to force every repository-accessing process
to use a sane umask. For users accessing the repository
directly, you can make the svn program into a
wrapper script that first sets umask 002 and
then runs the real svn client program. You
can write a similar wrapper script for the
svnserve program, and add a umask
002 command to Apache's own startup script,
apachectl
. For example:
$ cat /usr/bin/svn #!/bin/sh umask 002 /usr/bin/svn-real "$@"
Another common problem is often encountered on Unix-like
systems. As a repository is used, Berkeley DB occasionally
creates new log files to journal its actions. Even if the
repository is wholly owned by the svn group,
these newly created files won't necessarily be owned by that
same group, which then creates more permissions problems for
your users. A good workaround is to set the group SUID bit on
the repository's db
directory. This causes
all newly-created log files to have the same group owner as the
parent directory.
Once you've jumped through these hoops, your repository should be accessible by all the necessary processes. It may seem a bit messy and complicated, but the problems of having multiple users sharing write-access to common files are classic ones that are not often elegantly solved.
Fortunately, most repository administrators will never
need to have such a complex configuration.
Users who wish to access repositories that live on the same
machine are not limited to using file://
access URLs—they can typically contact the Apache HTTP
server or svnserve using
localhost
for the server name in their
http://
or svn://
URLs.
And to maintain multiple server processes for your Subversion
repositories is likely to be more of a headache than necessary.
We recommend you choose the server that best meets your needs
and stick with it!
[41] See RFC 2195.
[42] Note that using any sort of svnserve-enforced access control at all is a bit pointless; the user already has direct access to the repository database.
[43] We don't actually recommend this, since RSH is notably less secure than SSH.
[44] They really hate doing that.
[45] While self-signed server certificates are still vulnerable to a “man in the middle” attack, such an attack is much more difficult for a casual observer to pull off, compared to sniffing unprotected passwords.
[46] More security-conscious folk might not want to store
the client certificate password in the runtime
servers
file.
[47] Back then, it was called “ViewCVS”.
[48] A common theme in this book!
Table of Contents
Version control can be a complex subject, as much art as science, and offering myriad ways of getting stuff done. Throughout this book you've read of the various Subversion command-line client subcommands and the options which modify their behavior. In this chapter, we'll look into still more ways to customize the way Subversion works for you—setting up the Subversion runtime configuration, using external helper applications, Subversion's interaction with the operating system's configured locale, and so on.
Subversion provides many optional behaviors that can be controlled by the user. Many of these options are of the kind that a user would wish to apply to all Subversion operations. So, rather than forcing users to remember command-line arguments for specifying these options, and to use them for every operation they perform, Subversion uses configuration files, segregated into a Subversion configuration area.
The Subversion configuration area is a two-tiered hierarchy of option names and their values. Usually, this boils down to a special directory that contains configuration files (the first tier), which are just text files in standard INI format (with “sections” providing the second tier). These files can be easily edited using your favorite text editor (such as Emacs or vi), and contain directives read by the client to determine which of several optional behaviors the user prefers.
The first time that the svn
command-line client is executed, it creates a per-user
configuration area. On Unix-like systems, this area appears
as a directory named .subversion
in the
user's home directory. On Win32 systems, Subversion creates a
folder named Subversion
, typically inside
the Application Data
area of the user's
profile directory (which, by the way, is usually a hidden
directory). However, on this platform the exact location
differs from system to system, and is dictated by the Windows
registry.
[49]
We will refer to the per-user configuration area using its Unix
name, .subversion
.
In addition to the per-user configuration area, Subversion
also recognizes the existence of a system-wide configuration
area. This gives system administrators the ability to
establish defaults for all users on a given machine. Note
that the system-wide configuration area does not alone dictate
mandatory policy—the settings in the per-user
configuration area override those in the system-wide one, and
command-line arguments supplied to the svn
program have the final word on behavior. On Unix-like
platforms, the system-wide configuration area is
expected to be the /etc/subversion
directory; on Windows machines, it looks for a
Subversion
directory inside the common
Application Data
location (again, as
specified by the Windows Registry). Unlike the per-user
case, the svn program does not attempt
to create the system-wide configuration area.
The per-user configuration area currently contains three
files—two configuration files (config
and
servers
), and a README.txt
file which describes the INI format. At the time of their
creation, the files contain default values for each of the
supported Subversion options, mostly commented out and grouped
with textual descriptions about how the values for the key
affect Subversion's behavior. To change a certain behavior,
you need only to load the appropriate configuration file into
a text editor, and modify the desired option's value. If at
any time you wish to have the default configuration settings
restored, you can simply remove (or rename) your configuration
directory and then run some innocuous svn
command, such as svn --version. A new
configuration directory with the default contents will be
created.
The per-user configuration area also contains a cache of
authentication data. The auth
directory
holds a set of subdirectories that contain pieces of cached
information used by Subversion's various supported
authentication methods. This directory is created in such a
way that only the user herself has permission to read its
contents.
In addition to the usual INI-based configuration area, Subversion clients running on Windows platforms may also use the Windows registry to hold the configuration data. The option names and their values are the same as in the INI files. The “file/section” hierarchy is preserved as well, though addressed in a slightly different fashion—in this schema, files and sections are just levels in the registry key tree.
Subversion looks for system-wide configuration values
under the
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion
key. For example, the global-ignores
option,
which is in the miscellany
section of the
config
file, would be found at
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Config\Miscellany\global-ignores
.
Per-user configuration values should be stored under
HKEY_CURRENT_USER\Software\Tigris.org\Subversion
.
Registry-based configuration options are parsed before their file-based counterparts, so are overridden by values found in the configuration files. In other words, Subversion looks for configuration information in the following locations on a Windows system; lower-numbered locations take precedence over higher-numbered locations:
Command-line options
The per-user INI files
The per-user Registry values
The system-wide INI files
The system-wide Registry values
Also, the Windows Registry doesn't really support the
notion of something being “commented out”.
However, Subversion will ignore any option key whose name
begins with a hash (#
) character. This
allows you to effectively comment out a Subversion option
without deleting the entire key from the Registry, obviously
simplifying the process of restoring that option.
The svn command-line client never
attempts to write to the Windows Registry, and will not
attempt to create a default configuration area there. You can
create the keys you need using the REGEDIT
program. Alternatively, you can create a
.reg
file, and then double-click on that
file from the Explorer shell, which will cause the data to be
merged into your registry.
Example 7.1. Sample Registration Entries (.reg) File.
REGEDIT4 [HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\groups] [HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\global] "#http-proxy-host"="" "#http-proxy-port"="" "#http-proxy-username"="" "#http-proxy-password"="" "#http-proxy-exceptions"="" "#http-timeout"="0" "#http-compression"="yes" "#neon-debug-mask"="" "#ssl-authority-files"="" "#ssl-trust-default-ca"="" "#ssl-client-cert-file"="" "#ssl-client-cert-password"="" [HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\auth] "#store-passwords"="yes" "#store-auth-creds"="yes" [HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\helpers] "#editor-cmd"="notepad" "#diff-cmd"="" "#diff3-cmd"="" "#diff3-has-program-arg"="" [HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\tunnels] [HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\miscellany] "#global-ignores"="*.o *.lo *.la #*# .*.rej *.rej .*~ *~ .#* .DS_Store" "#log-encoding"="" "#use-commit-times"="" "#no-unlock"="" "#enable-auto-props"="" [HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\auto-props]
The previous example shows the contents of a
.reg
file which contains some of the most
commonly used configuration options and their default values.
Note the presence of both system-wide (for network
proxy-related options) and per-user settings (editor programs
and password storage, among others). Also note that all the
options are effectively commented out. You need only to
remove the hash (#
) character from the
beginning of the option names, and set the values as you
desire.
In this section, we will discuss the specific run-time configuration options that are currently supported by Subversion.
The servers
file contains
Subversion configuration options related to the network
layers. There are two special section names in this
file—groups
and
global
. The groups
section is essentially a cross-reference table. The keys in
this section are the names of other sections in the file;
their values are globs—textual
tokens which possibly contain wildcard
characters—that are compared against the hostnames of
the machine to which Subversion requests are sent.
[groups] beanie-babies = *.red-bean.com collabnet = svn.collab.net [beanie-babies] … [collabnet] …
When Subversion is used over a network, it attempts to
match the name of the server it is trying to reach with a
group name under the groups
section. If
a match is made, Subversion then looks for a section in the
servers
file whose name is the matched
group's name. From that section it reads the actual network
configuration settings.
The global
section contains the
settings that are meant for all of the servers not matched
by one of the globs under the groups
section. The options available in this section are
exactly the same as those valid for the other server
sections in the file (except, of course, the special
groups
section), and are as
follows:
http-proxy-exceptions
This specifies a comma-separated list of patterns for repository hostnames that should accessed directly, without using the proxy machine. The pattern syntax is the same as is used in the Unix shell for filenames. A repository hostname matching any of these patterns will not be proxied.
http-proxy-host
This specifies the hostname of the proxy computer through which your HTTP-based Subversion requests must pass. It defaults to an empty value, which means that Subversion will not attempt to route HTTP requests through a proxy computer, and will instead attempt to contact the destination machine directly.
http-proxy-port
This specifies the port number on the proxy host to use. It defaults to an empty value.
http-proxy-username
This specifies the username to supply to the proxy machine. It defaults to an empty value.
http-proxy-password
This specifies the password to supply to the proxy machine. It defaults to an empty value.
http-timeout
This specifies the amount of time, in seconds, to
wait for a server response. If you experience
problems with a slow network connection causing
Subversion operations to time out, you should increase
the value of this option. The default value is
0
, which instructs the underlying
HTTP library, Neon, to use its default timeout
setting.
http-compression
This specifies whether or not Subversion should
attempt to compress network requests made to DAV-ready
servers. The default value is yes
(though compression will only occur if that capability
is compiled into the network layer). Set this to
no
to disable compression, such as
when debugging network transmissions.
neon-debug-mask
This is an integer mask that the underlying HTTP
library, Neon, uses for choosing what type of
debugging output to yield. The default value is
0
, which will silence all debugging
output. For more information about how Subversion
makes use of Neon, see Chapter 8, Embedding Subversion.
ssl-authority-files
This is a semicolon-delimited list of paths to files containing certificates of the certificate authorities (or CAs) that are accepted by the Subversion client when accessing the repository over HTTPS.
ssl-trust-default-ca
Set this variable to yes
if you
want Subversion to automatically trust the set of
default CAs that ship with OpenSSL.
ssl-client-cert-file
If a host (or set of hosts) requires an SSL client certificate, you'll normally be prompted for a path to your certificate. By setting this variable to that same path, Subversion will be able to find your client certificate automatically without prompting you. There's no standard place to store your certificate on disk; Subversion will grab it from any path you specify.
ssl-client-cert-password
If your SSL client certificate file is encrypted
by a passphrase, Subversion will prompt you for the
passphrase whenever the certificate is used. If you
find this annoying (and don't mind storing the
password in the servers
file),
then you can set this variable to the certificate's
passphrase. You won't be prompted anymore.
The config
file contains the rest
of the currently available Subversion run-time options,
those not related to networking. There are only a few
options in use as of this writing, but they are again grouped into
sections in expectation of future additions.
The auth
section contains settings
related to Subversion's authentication and authorization
against the repository. It contains:
store-passwords
This instructs Subversion to cache, or not to
cache, passwords that are supplied by the user in
response to server authentication challenges. The
default value is yes
. Set this to
no
to disable this on-disk password
caching. You can override this option for a single
instance of the svn command using
the --no-auth-cache
command-line
parameter (for those subcommands that support it).
For more information, see the section called “Client Credentials Caching”.
store-auth-creds
This setting is the same as
store-passwords
, except that it
enables or disables disk-caching of
all authentication information:
usernames, passwords, server certificates, and any
other types of cacheable credentials.
The helpers
section controls which
external applications Subversion uses to accomplish its
tasks. Valid options in this section are:
editor-cmd
This specifies the program Subversion will use to
query the user for a log message during a commit
operation, such as when using svn
commit without either the
--message
(-m
) or
--file
(-F
) options.
This program is also used with the svn
propedit command—a temporary file is
populated with the current value of the property the
user wishes to edit, and the edits take place right
in the editor program (see the section called “Properties”). This option's default
value is empty. The order of priority for determining the
editor command (where lower-numbered locations take
precedence over higher-numbered locations) is:
Command-line option --editor-cmd
Environment variable SVN_EDITOR
Configuration option editor-cmd
Environment variable VISUAL
Environment variable EDITOR
Possibly, a default value built in to Subversion (not present in the official builds)
The value of any of these options or variables is
(unlike diff-cmd
) the beginning of a
command line to be executed by the shell. Subversion
appends a space and the pathname of the temporary file to be
edited. The editor should modify the temporary file and
return a zero exit code to indicate success.
diff-cmd
This specifies the absolute path of a differencing program, used when Subversion generates “diff” output (such as when using the svn diff command). By default Subversion uses an internal differencing library—setting this option will cause it to perform this task using an external program. See the section called “Using External Differencing Tools” for more details on using such programs.
diff3-cmd
This specifies the absolute path of a three-way differencing program. Subversion uses this program to merge changes made by the user with those received from the repository. By default Subversion uses an internal differencing library—setting this option will cause it to perform this task using an external program. See the section called “Using External Differencing Tools” for more details on using such programs.
diff3-has-program-arg
This flag should be set to true
if the program specified by the
diff3-cmd
option accepts a
--diff-program
command-line
parameter.
The tunnels
section allows you to
define new tunnel schemes for use with
svnserve and svn://
client connections. For more details, see the section called “Tunneling over SSH”.
The miscellany
section is where
everything that doesn't belong elsewhere winds up.
[50]
In this section, you can find:
global-ignores
When running the svn status
command, Subversion lists unversioned files and
directories along with the versioned ones, annotating
them with a ?
character (see the section called “See an overview of your changes”). Sometimes, it can
be annoying to see uninteresting, unversioned
items—for example, object files that result from
a program's compilation—in this display. The
global-ignores
option is a list of
whitespace-delimited globs which describe the names of
files and directories that Subversion should not
display unless they are versioned. The default value
is *.o *.lo *.la #*# .*.rej *.rej .*~ *~
.#* .DS_Store
.
As well as svn status, the
svn add and svn import
commands also ignore files that match the list
when they are scanning a directory. You can override this
behaviour for a single instance of any of these commands
by explicitly specifying the file name, or by using
the --no-ignore
command-line flag.
For information on more fine-grained control of ignored items, see the section called “Ignoring Unversioned Items”.
enable-auto-props
This instructs Subversion to automatically set
properties on newly added or imported files. The
default value is no
, so set this to
yes
to enable Auto-props.
The auto-props
section of this file
specifies which properties are to be set on which files.
log-encoding
This variable sets the default character set
encoding for commit log messages. It's a permanent
form of the --encoding
option (see
the section called “svn Options”). The Subversion
repository stores log messages in UTF-8, and assumes
that your log message is written using your operating
system's native locale. You should specify a
different encoding if your commit messages are written
in any other encoding.
use-commit-times
Normally your working copy files have timestamps that reflect the last time they were touched by any process, whether that be your own editor or by some svn subcommand. This is generally convenient for people developing software, because build systems often look at timestamps as a way of deciding which files need to be recompiled.
In other situations, however, it's sometimes nice
for the working copy files to have timestamps that
reflect the last time they were changed in the
repository. The svn export command
always places these “last-commit
timestamps” on trees that it produces. By
setting this config variable to
yes
, the svn
checkout, svn update,
svn switch, and svn
revert commands will also set last-commit
timestamps on files that they touch.
The auto-props
section controls
the Subversion client's ability to automatically set
properties on files when they are added or imported.
It contains any number of key-value pairs in the
format PATTERN = PROPNAME=PROPVALUE
where PATTERN
is a file pattern
that matches a set of filenames and the rest of the
line is the property and its value. Multiple matches
on a file will result in multiple propsets for that
file; however, there is no guarantee that auto-props
will be applied in the order in which they are listed
in the config file, so you can't have one rule
“override” another. You can find several
examples of auto-props usage in the
config
file. Lastly, don't
forget to set enable-auto-props
to
yes
in the miscellany
section if you want to enable auto-props.
Localization is the act of making programs behave in a region-specific way. When a program formats numbers or dates in a way specific to your part of the world, or prints messages (or accepts input) in your native language, the program is said to be localized. This section describes steps Subversion has made towards localization.
Most modern operating systems have a notion of the “current locale”—that is, the region or country whose localization conventions are honored. These conventions—typically chosen by some runtime configuration mechanism on the computer—affect the way in which programs present data to the user, as well as the way in which they accept user input.
On most Unix-like systems, you can check the values of the locale-related runtime configuration options by running the locale command:
$ locale LANG= LC_COLLATE="C" LC_CTYPE="C" LC_MESSAGES="C" LC_MONETARY="C" LC_NUMERIC="C" LC_TIME="C" LC_ALL="C"
The output is a list of locale-related environment
variables and their current values. In this example, the
variables are all set to the default C
locale, but users can set these variables to specific
country/language code combinations. For example, if one were
to set the LC_TIME
variable to
fr_CA
, then programs would know to present
time and date information formatted according a
French-speaking Canadian's expectations. And if one were to
set the LC_MESSAGES
variable to
zh_TW
, then programs would know to present
human-readable messages in Traditional Chinese. Setting the
LC_ALL
variable has the effect of changing
every locale variable to the same value. The value of
LANG
is used as a default value for any
locale variable that is unset. To see the list of available
locales on a Unix system, run the command locale
-a.
On Windows, locale configuration is done via the “Regional and Language Options” control panel item. There you can view and select the values of individual settings from the available locales, and even customize (at a sickening level of detail) several of the display formatting conventions.
The Subversion client, svn, honors the
current locale configuration in two ways. First, it notices
the value of the LC_MESSAGES
variable and
attempts to print all messages in the specified language. For
example:
$ export LC_MESSAGES=de_DE $ svn help cat cat: Gibt den Inhalt der angegebenen Dateien oder URLs aus. Aufruf: cat ZIEL[@REV]... …
This behavior works identically on both Unix and Windows
systems. Note, though, that while your operating system might
have support for a certain locale, the Subversion client still
may not be able to speak the particular language. In order to
produce localized messages, human volunteers must provide
translations for each language. The translations are written
using the GNU gettext package, which results in translation
modules that end with the .mo
filename
extension. For example, the German translation file is named
de.mo
. These translation files are
installed somewhere on your system. On Unix, they typically
live in /usr/share/locale/
, while
on Windows they're often found in the
\share\locale\
folder in Subversion's
installation area. Once installed, a module is named after
the program it provides translations for. For example, the
de.mo
file may ultimately end up
installed as
/usr/share/locale/de/LC_MESSAGES/subversion.mo
.
By browsing the installed .mo
files, you
can see which languages the Subversion client is able to
speak.
The second way in which the locale is honored involves how svn interprets your input. The repository stores all paths, filenames, and log messages in Unicode, encoded as UTF-8. In that sense, the repository is internationalized—that is, the repository is ready to accept input in any human language. This means, however, that the Subversion client is responsible for sending only UTF-8 filenames and log messages into the repository. In order to do this, it must convert the data from the native locale into UTF-8.
For example, suppose you create a file named
caffè.txt
, and then when committing the
file, you write the log message as “Adesso il caffè è
più forte”. Both the filename and log message contain
non-ASCII characters, but because your locale is set to
it_IT
, the Subversion client knows to
interpret them as Italian. It uses an Italian character set
to convert the data to UTF-8 before sending them off to the
repository.
Note that while the repository demands UTF-8 filenames and log messages, it does not pay attention to file contents. Subversion treats file contents as opaque strings of bytes, and neither client nor server makes an attempt to understand the character set or encoding of the contents.
The presence of --diff-cmd
and
--diff3-cmd
options, and similarly named
runtime configuration parameters (see the section called “Config”), can lead to a
false notion of how easy it is to use external differencing (or
“diff”) and merge tools with Subversion. While
Subversion can use most of popular such tools available, the
effort invested in setting this up often turns out to be
non-trivial.
The interface between Subversion and external diff and merge
tools harkens back to a time when Subversion's only contextual
differencing capabilities were built around invocations of the
GNU diffutils toolchain, specifically the
diff and diff3 utilities.
To get the kind of behavior Subversion needed, it called these
utilities with more than a handful of options and parameters,
most of which were quite specific to the utilities. Some time
later, Subversion grew its own internal differencing library,
and as a failover mechanism,
[51]
the --diff-cmd
and --diff3-cmd
options were added to the Subversion command-line client so
users could more easily indicate that they preferred to use the
GNU diff and diff3 utilities instead of the newfangled internal
diff library. If those options were used, Subversion would
simply ignore the internal diff library, and fall back to
running those external programs, lengthy argument lists and all.
And that's where things remain today.
It didn't take long for folks to realize that having such easy configuration mechanisms for specifying that Subversion should use the external GNU diff and diff3 utilities located at a particular place on the system could be applied toward the use of other diff and merge tools, too. After all, Subversion didn't actually verify that the things it was being told to run were members of the GNU diffutils toolchain. But the only configurable aspect of using those external tools is their location on the system—not the option set, parameter order, etc. Subversion continues throwing all those GNU utility options at your external diff tool regardless of whether or not that program can understand those options. And that's where things get unintuitive for most users.
The key to using external diff and merge tools (other than GNU diff and diff3, of course) with Subversion is to use wrapper scripts which convert the input from Subversion into something that your differencing tool can understand, and then to convert the output of your tool back into a format which Subversion expects—the format that the GNU tools would have used. The following sections cover the specifics of those expectations.
The decision on when to fire off a contextual diff or
merge as part of a larger Subversion operation is made
entirely by Subversion, and is affected by, among other
things, whether or not the files being operated on are
human-readable as determined by their
svn:mime-type
property. This means, for
example, that even if you had the niftiest Microsoft
Word-aware differencing or merging tool in the Universe, it
would never be invoked by Subversion so long as your versioned
Word documents had a configured MIME type that denoted that
they were not human-readable (such as
application/msword
). For more about MIME
type settings, see the section called “File Content Type”
Subversion calls external diff programs with parameters suitable for the GNU diff utility, and expects only that the external program return with a successful error code. For most alternative diff programs, only the sixth and seventh arguments—the paths of the files which represent the left and right sides of the diff, respectively—are of interest. Note that Subversion runs the diff program once per modified file covered by the Subversion operation, so if your program runs in an asynchronous fashion (or “backgrounded”), you might have several instances of it all running simultaneously. Finally, Subversion expects that your program return an error code of 1 if your program detected differences, or 0 if it did not—any other error code is considered a fatal error. [52]
Example 7.2, “diffwrap.sh” and Example 7.3, “diffwrap.bat” are templates for external diff tool wrappers in the Bourne shell and Windows batch scripting languages, respectively.
Example 7.2. diffwrap.sh
#!/bin/sh # Configure your favorite diff program here. DIFF="/usr/local/bin/my-diff-tool" # Subversion provides the paths we need as the sixth and seventh # parameters. LEFT=${6} RIGHT=${7} # Call the diff command (change the following line to make sense for # your merge program). $DIFF --left $LEFT --right $RIGHT # Return an errorcode of 0 if no differences were detected, 1 if some were. # Any other errorcode will be treated as fatal.
Example 7.3. diffwrap.bat
@ECHO OFF REM Configure your favorite diff program here. SET DIFF="C:\Program Files\Funky Stuff\My Diff Tool.exe" REM Subversion provides the paths we need as the sixth and seventh REM parameters. SET LEFT=%6 SET RIGHT=%7 REM Call the diff command (change the following line to make sense for REM your merge program). %DIFF% --left %LEFT% --right %RIGHT% REM Return an errorcode of 0 if no differences were detected, 1 if some were. REM Any other errorcode will be treated as fatal.
Subversion calls external merge programs with parameters suitable for the GNU diff3 utility, expecting that the external program return with a successful error code and that the full file contents which result from the completed merge operation are printed on the standard output stream (so that Subversion can redirect them into the appropriate version controlled file). For most alternative merge programs, only the ninth, tenth, and eleventh arguments, the paths of the files which represent the “mine”, “older”, and “yours” inputs, respectively, are of interest. Note that because Subversion depends on the output of your merge program, you wrapper script must not exit before that output has been delivered to Subversion. When it finally does exit, it should return an error code of 0 if the merge was successful, or 1 if unresolved conflicts remain in the output—any other error code is considered a fatal error.
Example 7.4, “diff3wrap.sh” and Example 7.5, “diff3wrap.bat” are templates for external merge tool wrappers in the Bourne shell and Windows batch scripting languages, respectively.
Example 7.4. diff3wrap.sh
#!/bin/sh # Configure your favorite diff3/merge program here. DIFF3="/usr/local/bin/my-merge-tool" # Subversion provides the paths we need as the ninth, tenth, and eleventh # parameters. MINE=${9} OLDER=${10} YOURS=${11} # Call the merge command (change the following line to make sense for # your merge program). $DIFF3 --older $OLDER --mine $MINE --yours $YOURS # After performing the merge, this script needs to print the contents # of the merged file to stdout. Do that in whatever way you see fit. # Return an errorcode of 0 on successful merge, 1 if unresolved conflicts # remain in the result. Any other errorcode will be treated as fatal.
Example 7.5. diff3wrap.bat
@ECHO OFF REM Configure your favorite diff3/merge program here. SET DIFF3="C:\Program Files\Funky Stuff\My Merge Tool.exe" REM Subversion provides the paths we need as the ninth, tenth, and eleventh REM parameters. But we only have access to nine parameters at a time, so we REM shift our nine-parameter window twice to let us get to what we need. SHIFT SHIFT SET MINE=%7 SET OLDER=%8 SET YOURS=%9 REM Call the merge command (change the following line to make sense for REM your merge program). %DIFF3% --older %OLDER% --mine %MINE% --yours %YOURS% REM After performing the merge, this script needs to print the contents REM of the merged file to stdout. Do that in whatever way you see fit. REM Return an errorcode of 0 on successful merge, 1 if unresolved conflicts REM remain in the result. Any other errorcode will be treated as fatal.
[49] The APPDATA
environment variable
points to the Application Data
area,
so you can always refer to this folder as
%APPDATA%\Subversion
.
[50] Anyone for potluck dinner?
[51] Subversion developers are good, but even the best make mistakes.
[52] The GNU diff manual page puts it this way: “An exit status of 0 means no differences were found, 1 means some differences were found, and 2 means trouble.”
Table of Contents
Subversion has a modular design: it's implemented as a collection of libraries written in C. Each library has a well-defined purpose and Application Programming Interface (API), and that interface is available not only for Subversion itself to use, but for any software that wishes to embed or otherwise programmatically control Subversion. Additionally, Subversion's API is available not only to other C programs, but also to programs written in higher-level languages such as Python, Perl, Java, or Ruby.
This chapter is for those who wish to interact with Subversion through its public API or its various language bindings. If you wish to write robust wrapper scripts around Subversion functionality to simplify your own life, are trying to develop more complex integrations between Subversion and other pieces of software, or just have an interest in Subversion's various library modules and what they offer, this chapter is for you. If, however, you don't foresee yourself participating with Subversion at such a level, feel free to skip this chapter with the confidence that your experience as a Subversion user will not be affected.
Each of Subversion's core libraries can be said to exist in one of three main layers—the Repository Layer, the Repository Access (RA) Layer, or the Client Layer (see Figure 1, “Subversion's Architecture”). We will examine these layers shortly, but first, let's briefly summarize Subversion's various libraries. For the sake of consistency, we will refer to the libraries by their extensionless Unix library names (libsvn_fs, libsvn_wc, mod_dav_svn, etc.).
Primary interface for client programs
Tree and byte-stream differencing routines
Contextual differencing and merging routines
Filesystem commons and module loader
The Berkeley DB filesystem back-end
The native filesystem (FSFS) back-end
Repository Access commons and module loader
The WebDAV Repository Access module
The local Repository Access module
Another (experimental) WebDAV Repository Access module
The custom protocol Repository Access module
Repository interface
Miscellaneous helpful subroutines
The working copy management library
Apache authorization module for Subversion repositories access via WebDAV
Apache module for mapping WebDAV operations to Subversion ones
The fact that the word “miscellaneous” only appears once in the previous list is a good sign. The Subversion development team is serious about making sure that functionality lives in the right layer and libraries. Perhaps the greatest advantage of the modular design is its lack of complexity from a developer's point of view. As a developer, you can quickly formulate that kind of “big picture” that allows you to pinpoint the location of certain pieces of functionality with relative ease.
Another benefit of modularity is the ability to replace a given module with a whole new library that implements the same API without affecting the rest of the code base. In some sense, this happens within Subversion already. The libsvn_ra_dav, libsvn_ra_local, libsvn_ra_serf, and libsvn_ra_svn libraries each implement the same interface, all working as plugins to libsvn_ra. And all four communicate with the Repository Layer—libsvn_ra_local connects to the repository directly; the other three do so over a network. The libsvn_fs_base and libsvn_fs_fs libraries are another pair of libraries that implement the same functionality in different ways—both are plugins to the common libsvn_fs library.
The client itself also highlights the benefits of modularity in the Subversion design. Subversion's libsvn_client library is a one-stop shop for most of the functionality necessary for designing a working Subversion client (see the section called “Client Layer”). So while the Subversion distribution provides only the svn command-line client program, there are several third-party programs which provide various forms of graphical client UI. These GUIs use the same APIs that the stock command-line client does. This type of modularity has played a large role in the proliferation of available Subversion clients and IDE integrations and, by extension, to the tremendous adoption rate of Subversion itself.
When referring to Subversion's Repository Layer, we're generally talking about two basic concepts—the versioned filesystem implementation (accessed via libsvn_fs, and supported by its libsvn_fs_base and libsvn_fs_fs plugins), and the repository logic that wraps it (as implemented in libsvn_repos). These libraries provide the storage and reporting mechanisms for the various revisions of your version-controlled data. This layer is connected to the Client Layer via the Repository Access Layer, and is, from the perspective of the Subversion user, the stuff at the “other end of the line.”
The Subversion Filesystem is not a kernel-level filesystem that one would install in an operating system (like the Linux ext2 or NTFS), but a virtual filesystem. Rather than storing “files” and “directories” as real files and directories (as in, the kind you can navigate through using your favorite shell program), it uses one of two available abstract storage backends—either a Berkeley DB database environment, or a flat-file representation. (To learn more about the two repository back-ends, see the section called “Choosing a Data Store”.) There has even been considerable interest by the development community in giving future releases of Subversion the ability to use other back-end database systems, perhaps through a mechanism such as Open Database Connectivity (ODBC). In fact, Google did something similar to this before launching the Google Code Project Hosting service: they announced in mid-2006 that members of its Open Source team had written a new proprietary Subversion filesystem plugin which used their ultra-scalable Bigtable database for its storage.
The filesystem API exported by libsvn_fs contains the kinds of functionality you would expect from any other filesystem API—you can create and remove files and directories, copy and move them around, modify file contents, and so on. It also has features that are not quite as common, such as the ability to add, modify, and remove metadata (“properties”) on each file or directory. Furthermore, the Subversion Filesystem is a versioning filesystem, which means that as you make changes to your directory tree, Subversion remembers what your tree looked like before those changes. And before the previous changes. And the previous ones. And so on, all the way back through versioning time to (and just beyond) the moment you first started adding things to the filesystem.
All the modifications you make to your tree are done within the context of a Subversion commit transaction. The following is a simplified general routine for modifying your filesystem:
Begin a Subversion commit transaction.
Make your changes (adds, deletes, property modifications, etc.).
Commit your transaction.
Once you have committed your transaction, your filesystem modifications are permanently stored as historical artifacts. Each of these cycles generates a single new revision of your tree, and each revision is forever accessible as an immutable snapshot of “the way things were.”
Most of the functionality provided by the filesystem
interface deals with actions that occur on individual
filesystem paths. That is, from outside of the filesystem, the
primary mechanism for describing and accessing the individual
revisions of files and directories comes through the use of
path strings like /foo/bar
, just as if
you were addressing files and directories through your
favorite shell program. You add new files and directories by
passing their paths-to-be to the right API functions. You
query for information about them by the same mechanism.
Unlike most filesystems, though, a path alone is not enough information to identify a file or directory in Subversion. Think of a directory tree as a two-dimensional system, where a node's siblings represent a sort of left-and-right motion, and descending into subdirectories a downward motion. Figure 8.1, “Files and directories in two dimensions” shows a typical representation of a tree as exactly that.
The difference here is that the Subversion filesystem has a
nifty third dimension that most filesystems do not
have—Time!
[53]
In the filesystem interface, nearly every function that has a
path
argument also expects a
root
argument. This
svn_fs_root_t argument describes
either a revision or a Subversion transaction (which is simply
a revision-in-the-making), and provides that third-dimensional
context needed to understand the difference between
/foo/bar
in revision 32, and the same
path as it exists in revision 98. Figure 8.2, “Versioning time—the third dimension!” shows revision
history as an added dimension to the Subversion filesystem
universe.
As we mentioned earlier, the libsvn_fs API looks and feels like any other filesystem, except that it has this wonderful versioning capability. It was designed to be usable by any program interested in a versioning filesystem. Not coincidentally, Subversion itself is interested in that functionality. But while the filesystem API should be sufficient for basic file and directory versioning support, Subversion wants more—and that is where libsvn_repos comes in.
The Subversion repository library (libsvn_repos) sits (logically speaking) atop the libsvn_fs API, providing additional functionality beyond that of the underlying versioned filesystem logic. It does not completely wrap each and every filesystem function—only certain major steps in the general cycle of filesystem activity are wrapped by the repository interface. Some of these include the creation and commit of Subversion transactions, and the modification of revision properties. These particular events are wrapped by the repository layer because they have hooks associated with them. A repository hook system is not strictly related to implementing a versioning filesystem, so it lives in the repository wrapper library.
The hooks mechanism is but one of the reasons for the abstraction of a separate repository library from the rest of the filesystem code. The libsvn_repos API provides several other important utilities to Subversion. These include the abilities to:
create, open, destroy, and perform recovery steps on a Subversion repository and the filesystem included in that repository.
describe the differences between two filesystem trees.
query for the commit log messages associated with all (or some) of the revisions in which a set of files was modified in the filesystem.
generate a human-readable “dump” of the filesystem, a complete representation of the revisions in the filesystem.
parse that dump format, loading the dumped revisions into a different Subversion repository.
As Subversion continues to evolve, the repository library will grow with the filesystem library to offer increased functionality and configurable option support.
If the Subversion Repository Layer is at “the other end of the line”, the Repository Access (RA) Layer is the line itself. Charged with marshaling data between the client libraries and the repository, this layer includes the libsvn_ra module loader library, the RA modules themselves (which currently includes libsvn_ra_dav, libsvn_ra_local, libsvn_ra_serf, and libsvn_ra_svn), and any additional libraries needed by one or more of those RA modules (such as the mod_dav_svn Apache module or libsvn_ra_svn's server, svnserve).
Since Subversion uses URLs to identify its repository
resources, the protocol portion of the URL scheme (usually
file://
, http://
,
https://
, svn://
, or
svn+ssh://
) is used to determine which RA
module will handle the communications. Each module registers
a list of the protocols it knows how to “speak”
so that the RA loader can, at runtime, determine which module
to use for the task at hand. You can determine which RA
modules are available to the Subversion command-line client,
and what protocols they claim to support, by running
svn --version:
$ svn --version svn, version 1.4.3 (r23084) compiled Jan 18 2007, 07:47:40 Copyright (C) 2000-2006 CollabNet. Subversion is open source software, see http://subversion.tigris.org/ This product includes software developed by CollabNet (http://www.Collab.Net/). The following repository access (RA) modules are available: * ra_dav : Module for accessing a repository via WebDAV (DeltaV) protocol. - handles 'http' scheme - handles 'https' scheme * ra_svn : Module for accessing a repository using the svn network protocol. - handles 'svn' scheme * ra_local : Module for accessing a repository on local disk. - handles 'file' scheme $
The public API exported by the RA Layer contains functionality necessary for sending and receiving versioned data to and from the repository. And each of the available RA plugins is able to perform that task using a specific protocol—libsvn_ra_dav speaks HTTP/WebDAV (optionally using SSL encryption) with an Apache HTTP Server that is running the mod_dav_svn Subversion server module; libsvn_ra_svn speaks a custom network protocol with the svnserve program; and so on.
And for those who wish to access a Subversion repository using still another protocol, that is precisely why the Repository Access Layer is modularized! Developers can simply write a new library that implements the RA interface on one side and communicates with the repository on the other. Your new library can use existing network protocols, or you can invent your own. You could use inter-process communication (IPC) calls, or—let's get crazy, shall we?—you could even implement an email-based protocol. Subversion supplies the APIs; you supply the creativity.
On the client side, the Subversion working copy is where all the action takes place. The bulk of functionality implemented by the client-side libraries exists for the sole purpose of managing working copies—directories full of files and other subdirectories which serve as a sort of local, editable “reflection” of one or more repository locations—and propagating changes to and from the Repository Access layer.
Subversion's working copy library, libsvn_wc, is directly
responsible for managing the data in the working copies. To
accomplish this, the library stores administrative information
about each working copy directory within a special
subdirectory. This subdirectory, named
.svn
, is present in each working copy
directory and contains various other files and directories
which record state and provide a private workspace for
administrative action. For those familiar with CVS, this
.svn
subdirectory is similar in purpose
to the CVS
administrative directories
found in CVS working copies. For more information about the
.svn
administrative area, see the section called “Inside the Working Copy Administration Area”in this chapter.
The Subversion client library, libsvn_client, has the
broadest responsibility; its job is to mingle the
functionality of the working copy library with that of the
Repository Access Layer, and then to provide the highest-level
API to any application that wishes to perform general revision
control actions. For example, the function
svn_client_checkout()
takes a URL as an
argument. It passes this URL to the RA layer and opens an
authenticated session with a particular repository. It then
asks the repository for a certain tree, and sends this tree
into the working copy library, which then writes a full
working copy to disk (.svn
directories
and all).
The client library is designed to be used by any
application. While the Subversion source code includes a
standard command-line client, it should be very easy to write
any number of GUI clients on top of the client library. New
GUIs (or any new client, really) for Subversion need not be
clunky wrappers around the included command-line
client—they have full access via the libsvn_client API
to same functionality, data, and callback mechanisms that the
command-line client uses. In fact, the Subversion source code
tree contains a small C program (which can be found at
tools/examples/minimal_client.c
that
exemplifies how to wield the Subversion API to create a simple
client program
As we mentioned earlier, each directory of a Subversion
working copy contains a special subdirectory called
.svn
which houses administrative data about
that working copy directory. Subversion uses the information in
.svn
to keep track of things like:
Which repository location(s) are represented by the files and subdirectories in the working copy directory.
What revision of each of those files and directories are currently present in the working copy.
Any user-defined properties that might be attached to those files and directories.
Pristine (un-edited) copies of the working copy files.
The Subversion working copy administration area's layout and contents are considered implementation details not really intended for human consumption. Developers are encouraged to use Subversion's public APIs, or the tools that Subversion provides, to access and manipulate the working copy data, instead of directly reading or modifying those files. The file formats employed by the working copy library for its administrative data do change from time to time—a fact that the public APIs do a great job of hiding from the average user. In this section, we expose some of these implementation details sheerly to appease your overwhelming curiosity.
Perhaps the single most important file in the
.svn
directory is the
entries
file. It
contains the bulk of the administrative
information about the versioned items in a working copy
directory. It is this one file which tracks the repository
URLs, pristine revision, file checksums, pristine text and
property timestamps, scheduling and conflict state
information, last-known commit information (author, revision,
timestamp), local copy history—practically everything
that a Subversion client is interested in knowing about a
versioned (or to-be-versioned) resource!
Folks familiar with CVS's administrative directories will
have recognized at this point that Subversion's
.svn/entries
file serves the purposes of,
among other things, CVS's CVS/Entries
,
CVS/Root
, and
CVS/Repository
files combined.
The format of the .svn/entries
file
has changed over time. Originally an XML file, it now uses a
custom—though still human-readable—file format.
While XML was a great choice for early developers of
Subversion who were frequently debugging the file's contents
(and Subversion's behavior in light of them), the need for
easy developer debugging has diminished as Subversion has
matured, and has been replaced by the user's need for snappier
performance. Be aware that Subversion's working copy library
automatically upgrades working copies from one format to
another—it reads the old formats, and writes the
new—which saves you the hassle of checking out a new
working copy, but can also complicate situations where
different versions of Subversion might be trying to use the
same working copy.
As mentioned before, the .svn
directory also holds the pristine “text-base”
versions of files. Those can be found in
.svn/text-base
. The benefits of these
pristine copies are multiple—network-free checks for
local modifications and difference reporting, network-free
reversion of modified or missing files, more efficient transmission
of changes to the server—but comes at the cost of having
each versioned file stored at least twice on disk. These
days, this seems to be a negligible penalty for most files.
However, the situation gets uglier as the size of your
versioned files grows. Some attention is being given to
making the presence of the “text-base” an option.
Ironically though, it is as your versioned files' sizes get
larger that the existence of the “text-base”
becomes more crucial—who wants to transmit a huge file
across a network just because they want to commit a tiny
change to it?
Similar in purpose to the “text-base” files
are the property files and their pristine
“prop-base” copies, located in
.svn/props
and
.svn/prop-base
respectively. Since
directories can have properties, too, there are also
.svn/dir-props
and
.svn/dir-prop-base
files.
Developing applications against the Subversion library APIs
is fairly straightforward. Subversion is primarily a set of C
libraries, with header (.h) files that live in the
subversion/include
directory of the source
tree. These headers are copied into your system locations (for
example, /usr/local/include
) when you build
and install Subversion itself from source. These headers
represent the entirety of the functions and types meant to be
accessible by users of the Subversion libraries. The Subversion
developer community is meticulous about ensuring that the public
API is well-documented—refer directly to the header files
for that documentation.
When examining the public header files, the first thing you
might notice is that Subversion's datatypes and functions are
namespace protected. That is, every public Subversion symbol name begins
with svn_
, followed by a short code for the
library in which the symbol is defined (such as
wc
, client
,
fs
, etc.), followed by a single underscore
(_
) and then the rest of the symbol name.
Semi-public functions (used among source files of a given
library but not by code outside that library, and found inside
the library directories themselves) differ from this naming
scheme in that instead of a single underscore after the library
code, they use a double underscore (__
).
Functions that are private to a given source file have no
special prefixing, and are declared static
.
Of course, a compiler isn't interested in these naming
conventions, but they help to clarify the scope of a given
function or datatype.
Another good source of information about programming against the Subversion APIs is the project's own hacking guidelines, which can be found at http://subversion.tigris.org/hacking.html. This document contains useful information which, while aimed at developers and would-be developers of Subversion itself, is equally applicable to folks developing against Subversion as a set of third-party libraries. [54]
Along with Subversion's own datatypes, you will see many
references to datatypes that begin with
apr_
—symbols from the Apache Portable
Runtime (APR) library. APR is Apache's portability library,
originally carved out of its server code as an attempt to
separate the OS-specific bits from the OS-independent portions
of the code. The result was a library that provides a generic
API for performing operations that differ mildly—or
wildly—from OS to OS. While the Apache HTTP Server was
obviously the first user of the APR library, the Subversion
developers immediately recognized the value of using APR as
well. This means that there is practically no OS-specific
code in Subversion itself. Also, it means that the Subversion
client compiles and runs anywhere that Apache HTTP Server
itself does. Currently this list includes all flavors of
Unix, Win32, BeOS, OS/2, and Mac OS X.
In addition to providing consistent implementations of
system calls that differ across operating systems,
[55]
APR gives Subversion immediate access to many custom
datatypes, such as dynamic arrays and hash tables. Subversion
uses these types extensively. But
perhaps the most pervasive APR datatype, found in nearly every
Subversion API prototype, is the
apr_pool_t—the APR memory pool.
Subversion uses pools internally for all its memory allocation
needs (unless an external library requires a different memory
management mechanism for data passed through its API),
[56]
and while a person coding against the Subversion APIs is
not required to do the same, they are required to provide
pools to the API functions that need them. This means that
users of the Subversion API must also link against APR, must
call apr_initialize()
to initialize the
APR subsystem, and then must create and manage pools for use with
Subversion API calls, typically by using
svn_pool_create()
,
svn_pool_clear()
, and
svn_pool_destroy()
.
With remote version control operation as the whole point
of Subversion's existence, it makes sense that some attention
has been paid to internationalization (i18n) support. After
all, while “remote” might mean “across the
office”, it could just as well mean “across the
globe.” To facilitate this, all of Subversion's public
interfaces that accept path arguments expect those paths to be
canonicalized, and encoded in UTF-8. This means, for example,
that any new client binary that drives the libsvn_client
interface needs to first convert paths from the
locale-specific encoding to UTF-8 before passing those paths
to the Subversion libraries, and then re-convert any resultant
output paths from Subversion back into the locale's encoding
before using those paths for non-Subversion purposes.
Fortunately, Subversion provides a suite of functions (see
subversion/include/svn_utf.h
) that can be
used by any program to do these conversions.
Also, Subversion APIs require all URL parameters to be
properly URI-encoded. So, instead of passing
file:///home/username/My File.txt
as the URL of a
file named My File.txt
, you need to pass
file:///home/username/My%20File.txt
. Again,
Subversion supplies helper functions that your application can
use—svn_path_uri_encode()
and
svn_path_uri_decode()
, for URI encoding
and decoding, respectively.
If you are interested in using the Subversion libraries in
conjunction with something other than a C program—say a
Python or Perl script—Subversion has some support for this
via the Simplified Wrapper and Interface Generator (SWIG). The
SWIG bindings for Subversion are located in
subversion/bindings/swig
. They are still
maturing, but they are usable. These bindings allow you
to call Subversion API functions indirectly, using wrappers that
translate the datatypes native to your scripting language into
the datatypes needed by Subversion's C libraries.
Significant efforts have been made towards creating functional SWIG-generated bindings for Python, Perl, and Ruby. To some extent, the work done preparing the SWIG interface files for these languages is reusable in efforts to generate bindings for other languages supported by SWIG (which include versions of C#, Guile, Java, MzScheme, OCaml, PHP, and Tcl, among others). However, some extra programming is required to compensate for complex APIs that SWIG needs some help translating between languages. For more information on SWIG itself, see the project's website at http://www.swig.org/.
Subversion also has language bindings for Java. The
JavaJL bindings (located in
subversion/bindings/java
in the
Subversion source tree) aren't SWIG-based, but are instead a
mixture of javah and hand-coded JNI. JavaHL most covers
Subversion client-side APIs, and is specifically targeted at
implementors of Java-based Subversion clients and IDE
integrations.
Subversion's language bindings tend to lack the level of developer attention given to the core Subversion modules, but can generally be trusted as production-ready. A number of scripts and applications, alternative Subversion GUI clients and other third-party tools are successfully using Subversion's language bindings today to accomplish their Subversion integrations.
It's worth noting here that there are other options for interfacing with Subversion using other languages: alternative bindings for Subversion which aren't provided by the Subversion development community at all. You can find links to these alternative bindings on the Subversion project's links page (at http://subversion.tigris.org/links.html), but there are a couple of popular ones we feel are especially noteworthy. First, Barry Scott's PySVN bindings (http://pysvn.tigris.org/) are a popular option for binding with Python. PySVN boasts of a more Pythonic interface than the more C-like APIs provided by Subversion's own Python bindings. For folks looking for a pure Java implementation of Subversion, check out SVNKit (http://svnkit.com/), which is Subversion re-written from the ground up in Java. You should exercise caution here, though—because SVNKit doesn't use the core Subversion libraries, it's behavior is not guaranteed to match that of Subversion itself.
Example 8.1, “Using the Repository Layer”
contains a code segment (written in C) that illustrates some
of the concepts we've been discussing. It uses both the
repository and filesystem interfaces (as can be determined by
the prefixes svn_repos_
and
svn_fs_
of the function names,
respectively) to create a new revision in which a directory is
added. You can see the use of an APR pool, which is passed
around for memory allocation purposes. Also, the code reveals
a somewhat obscure fact about Subversion error
handling—all Subversion errors must be explicitly
handled to avoid memory leakage (and in some cases,
application failure).
Example 8.1. Using the Repository Layer
/* Convert a Subversion error into a simple boolean error code. * * NOTE: Subversion errors must be cleared (using svn_error_clear()) * because they are allocated from the global pool, else memory * leaking occurs. */ #define INT_ERR(expr) \ do { \ svn_error_t *__temperr = (expr); \ if (__temperr) \ { \ svn_error_clear(__temperr); \ return 1; \ } \ return 0; \ } while (0) /* Create a new directory at the path NEW_DIRECTORY in the Subversion * repository located at REPOS_PATH. Perform all memory allocation in * POOL. This function will create a new revision for the addition of * NEW_DIRECTORY. Return zero if the operation completes * successfully, non-zero otherwise. */ static int make_new_directory(const char *repos_path, const char *new_directory, apr_pool_t *pool) { svn_error_t *err; svn_repos_t *repos; svn_fs_t *fs; svn_revnum_t youngest_rev; svn_fs_txn_t *txn; svn_fs_root_t *txn_root; const char *conflict_str; /* Open the repository located at REPOS_PATH. */ INT_ERR(svn_repos_open(&repos, repos_path, pool)); /* Get a pointer to the filesystem object that is stored in REPOS. */ fs = svn_repos_fs(repos); /* Ask the filesystem to tell us the youngest revision that * currently exists. */ INT_ERR(svn_fs_youngest_rev(&youngest_rev, fs, pool)); /* Begin a new transaction that is based on YOUNGEST_REV. We are * less likely to have our later commit rejected as conflicting if we * always try to make our changes against a copy of the latest snapshot * of the filesystem tree. */ INT_ERR(svn_fs_begin_txn(&txn, fs, youngest_rev, pool)); /* Now that we have started a new Subversion transaction, get a root * object that represents that transaction. */ INT_ERR(svn_fs_txn_root(&txn_root, txn, pool)); /* Create our new directory under the transaction root, at the path * NEW_DIRECTORY. */ INT_ERR(svn_fs_make_dir(txn_root, new_directory, pool)); /* Commit the transaction, creating a new revision of the filesystem * which includes our added directory path. */ err = svn_repos_fs_commit_txn(&conflict_str, repos, &youngest_rev, txn, pool); if (! err) { /* No error? Excellent! Print a brief report of our success. */ printf("Directory '%s' was successfully added as new revision " "'%ld'.\n", new_directory, youngest_rev); } else if (err->apr_err == SVN_ERR_FS_CONFLICT) { /* Uh-oh. Our commit failed as the result of a conflict * (someone else seems to have made changes to the same area * of the filesystem that we tried to modify). Print an error * message. */ printf("A conflict occurred at path '%s' while attempting " "to add directory '%s' to the repository at '%s'.\n", conflict_str, new_directory, repos_path); } else { /* Some other error has occurred. Print an error message. */ printf("An error occurred while attempting to add directory '%s' " "to the repository at '%s'.\n", new_directory, repos_path); } INT_ERR(err); }
Note that in Example 8.1, “Using the Repository Layer”, the code could
just as easily have committed the transaction using
svn_fs_commit_txn()
. But the filesystem
API knows nothing about the repository library's hook
mechanism. If you want your Subversion repository to
automatically perform some set of non-Subversion tasks every
time you commit a transaction (like, for example, sending an
email that describes all the changes made in that transaction
to your developer mailing list), you need to use the
libsvn_repos-wrapped version of that function, which adds the
hook triggering functionality—in this case,
svn_repos_fs_commit_txn()
. (For more
information regarding Subversion's repository hooks, see the section called “Implementing Repository Hooks”.)
Now let's switch languages. Example 8.2, “Using the Repository Layer with Python” is a sample program that uses Subversion's SWIG Python bindings to recursively crawl the youngest repository revision, and print the various paths reached during the crawl.
Example 8.2. Using the Repository Layer with Python
#!/usr/bin/python """Crawl a repository, printing versioned object path names.""" import sys import os.path import svn.fs, svn.core, svn.repos def crawl_filesystem_dir(root, directory): """Recursively crawl DIRECTORY under ROOT in the filesystem, and return a list of all the paths at or below DIRECTORY.""" # Print the name of this path. print directory + "/" # Get the directory entries for DIRECTORY. entries = svn.fs.svn_fs_dir_entries(root, directory) # Loop over the entries. names = entries.keys() for name in names: # Calculate the entry's full path. full_path = directory + '/' + name # If the entry is a directory, recurse. The recursion will return # a list with the entry and all its children, which we will add to # our running list of paths. if svn.fs.svn_fs_is_dir(root, full_path): crawl_filesystem_dir(root, full_path) else: # Else it's a file, so print its path here. print full_path def crawl_youngest(repos_path): """Open the repository at REPOS_PATH, and recursively crawl its youngest revision.""" # Open the repository at REPOS_PATH, and get a reference to its # versioning filesystem. repos_obj = svn.repos.svn_repos_open(repos_path) fs_obj = svn.repos.svn_repos_fs(repos_obj) # Query the current youngest revision. youngest_rev = svn.fs.svn_fs_youngest_rev(fs_obj) # Open a root object representing the youngest (HEAD) revision. root_obj = svn.fs.svn_fs_revision_root(fs_obj, youngest_rev) # Do the recursive crawl. crawl_filesystem_dir(root_obj, "") if __name__ == "__main__": # Check for sane usage. if len(sys.argv) != 2: sys.stderr.write("Usage: %s REPOS_PATH\n" % (os.path.basename(sys.argv[0]))) sys.exit(1) # Canonicalize the repository path. repos_path = svn.core.svn_path_canonicalize(sys.argv[1]) # Do the real work. crawl_youngest(repos_path)
This same program in C would need to deal with APR's memory pool system. But Python handles memory usage automatically, and Subversion's Python bindings adhere to that convention. In C, you'd be working with custom datatypes (such as those provided by the APR library) for representing the hash of entries and the list of paths, but Python has hashes (called “dictionaries”) and lists as built-in datatypes, and provides a rich collection of functions for operating on those types. So SWIG (with the help of some customizations in Subversion's language bindings layer) takes care of mapping those custom datatypes into the native datatypes of the target language. This provides a more intuitive interface for users of that language.
The Subversion Python bindings can be used for working
copy operations, too. In the previous section of this
chapter, we mentioned the libsvn_client
interface, and how it exists for the sole purpose of
simplifying the process of writing a Subversion client. Example 8.3, “A Python Status Crawler” is a brief
example of how that library can be accessed via the SWIG
Python bindings to recreate a scaled-down version of the
svn status command.
Example 8.3. A Python Status Crawler
#!/usr/bin/env python """Crawl a working copy directory, printing status information.""" import sys import os.path import getopt import svn.core, svn.client, svn.wc def generate_status_code(status): """Translate a status value into a single-character status code, using the same logic as the Subversion command-line client.""" code_map = { svn.wc.svn_wc_status_none : ' ', svn.wc.svn_wc_status_normal : ' ', svn.wc.svn_wc_status_added : 'A', svn.wc.svn_wc_status_missing : '!', svn.wc.svn_wc_status_incomplete : '!', svn.wc.svn_wc_status_deleted : 'D', svn.wc.svn_wc_status_replaced : 'R', svn.wc.svn_wc_status_modified : 'M', svn.wc.svn_wc_status_merged : 'G', svn.wc.svn_wc_status_conflicted : 'C', svn.wc.svn_wc_status_obstructed : '~', svn.wc.svn_wc_status_ignored : 'I', svn.wc.svn_wc_status_external : 'X', svn.wc.svn_wc_status_unversioned : '?', } return code_map.get(status, '?') def do_status(wc_path, verbose): # Calculate the length of the input working copy path. wc_path_len = len(wc_path) # Build a client context baton. ctx = svn.client.svn_client_ctx_t() def _status_callback(path, status, root_path_len=wc_path_len): """A callback function for svn_client_status.""" # Print the path, minus the bit that overlaps with the root of # the status crawl text_status = generate_status_code(status.text_status) prop_status = generate_status_code(status.prop_status) print '%s%s %s' % (text_status, prop_status, path[wc_path_len + 1:]) # Do the status crawl, using _status_callback() as our callback function. svn.client.svn_client_status(wc_path, None, _status_callback, 1, verbose, 0, 0, ctx) def usage_and_exit(errorcode): """Print usage message, and exit with ERRORCODE.""" stream = errorcode and sys.stderr or sys.stdout stream.write("""Usage: %s OPTIONS WC-PATH Options: --help, -h : Show this usage message --verbose, -v : Show all statuses, even uninteresting ones """ % (os.path.basename(sys.argv[0]))) sys.exit(errorcode) if __name__ == '__main__': # Parse command-line options. try: opts, args = getopt.getopt(sys.argv[1:], "hv", ["help", "verbose"]) except getopt.GetoptError: usage_and_exit(1) verbose = 0 for opt, arg in opts: if opt in ("-h", "--help"): usage_and_exit(0) if opt in ("-v", "--verbose"): verbose = 1 if len(args) != 1: usage_and_exit(2) # Canonicalize the repository path. wc_path = svn.core.svn_path_canonicalize(args[0]) # Do the real work. try: do_status(wc_path, verbose) except svn.core.SubversionException, e: sys.stderr.write("Error (%d): %s\n" % (e[1], e[0])) sys.exit(1)
As was the case in Example 8.2, “Using the Repository Layer with Python”, this
program is pool-free and uses, for the most part, normal
Python data types. The call to
svn_client_ctx_t()
is deceiving because
the public Subversion API has no such function—this just
happens to be a case where SWIG's automatic language
generation bleeds through a little bit (the function is a sort
of factory function for Python's version of the corresponding
complex C structure). Also note that the path passed to this
program (like the last one) gets run through
svn_path_canonicalize()
, because to
not do so runs the risk of triggering the
underlying Subversion C library's assertions about such
things, which translate into rather immediate and
unceremonious program abortion.
[53] We understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was actually the fourth dimension, and we apologize for any emotional trauma induced by our assertion of a different theory.
[54] After all, Subversion uses Subversion's APIs, too.
[55] Subversion uses ANSI system calls and datatypes as much as possible.
[56] Neon and Berkeley DB are examples of such libraries.
[57] Or at least make it something you only toy with when doing extremely tight program optimization.
Table of Contents
This chapter is intended to be a complete reference to using Subversion. This includes the command line client (svn) and all its subcommands, as well as the repository administration programs (svnadmin and svnlook) and their respective subcommands.
To use the command line client, you type svn, the subcommand you wish to use [58], and any options or targets that you wish to operate on—there is no specific order that the subcommand and the options must appear in. For example, all of the following are valid ways to use svn status:
$ svn -v status $ svn status -v $ svn status -v myfile
You can find many more examples of how to use most client commands in Chapter 2, Basic Usage and commands for managing properties in the section called “Properties”.
While Subversion has different options for its
subcommands, all options are global—that is, each
option is guaranteed to mean the same thing regardless of
the subcommand you use it with. For example,
--verbose
(-v
) always
means “verbose output”, regardless of the
subcommand you use it with.
--auto-props
Enables auto-props, overriding the
enable-auto-props
directive in the
config
file.
--change
(-c
)
ARG
Used as a means to refer to a specific “change” (aka a revision), this option is syntactic sugar for “-r ARG-1:ARG”.
--config-dir
DIR
Instructs Subversion to read configuration
information from the specified directory instead of the
default location (.subversion
in
the user's home directory).
--diff-cmd
CMD
Specifies an external program to use to show
differences between files. When svn
diff is invoked without this option, it uses
Subversion's internal diff engine, which provides
unified diffs by default. If you want to use an
external diff program, use --diff-cmd
.
You can pass options to the diff program with the
--extensions
option (more on that later
in this section).
--diff3-cmd
CMD
Specifies an external program to use to merge files.
--dry-run
Goes through all the motions of running a command, but makes no actual changes—either on disk or in the repository.
--editor-cmd
CMD
Specifies an external program to use to edit a log message
or a property value. See the editor-cmd
section in the section called “Config”
for ways to specify a default editor.
--encoding
ENC
Tells Subversion that your commit message is encoded in the charset provided. The default is your operating system's native locale, and you should specify the encoding if your commit message is in any other encoding.
--extensions
(-x
)
ARGS
Specifies an argument or arguments that Subversion
should pass to an external diff command. This option is
valid only when used with the svn
diff or svn merge commands,
with the
--diff-cmd
option.
If you wish to pass multiple
arguments, you must enclose all of them in quotes (for
example, svn diff --diff-cmd /usr/bin/diff -x
"-b -E").
--file
(-F
)
FILENAME
Uses the contents of the named file for the specified subcommand, though different subcommands do different things with this content. For example, svn commit uses the content as a commit log, whereas svn propset uses it as a property value.
--force
Forces a particular command or operation to run. There are some operations that Subversion will prevent you from doing in normal usage, but you can pass the force option to tell Subversion “I know what I'm doing as well as the possible repercussions of doing it, so let me at 'em”. This option is the programmatic equivalent of doing your own electrical work with the power on—if you don't know what you're doing, you're likely to get a nasty shock.
--force-log
Forces a suspicious parameter passed to the
--message
(-m
) or
--file
(-F
) options to
be accepted as valid. By default, Subversion will
produce an error if parameters to these options look
like they might instead be targets of the subcommand.
For example, if you pass a versioned file's path to the
--file
(-F
) option,
Subversion will assume you've made a mistake, that the
path was instead intended as the target of the
operation, and that you simply failed to provide some
other—unversioned—file as the source of your log
message. To assert your intent and override these types
of errors, pass the --force-log
option
to subcommands that accept log messages.
--help
(-h
or
-?
)
If used with one or more subcommands, shows the built-in help text for each subcommand. If used alone, it displays the general client help text.
--ignore-ancestry
Tells Subversion to ignore ancestry when calculating differences (rely on path contents alone).
--ignore-externals
Tells Subversion to ignore external definitions and the external working copies managed by them.
--incremental
Prints output in a format suitable for concatenation.
--limit
NUM
Show only the first NUM
log messages.
--message
(-m
)
MESSAGE
Indicates that you will specify a either a log message or a lock comment on the command line, following this option. For example:
$ svn commit -m "They don't make Sunday."
--new
ARG
Uses ARG
as the newer
target (for use with svn diff).
--no-auth-cache
Prevents caching of authentication information (e.g. username and password) in the Subversion administrative directories.
--no-auto-props
Disables auto-props, overriding the
enable-auto-props
directive in the
config
file.
--no-diff-added
Prevents Subversion from printing differences for added files. The default behavior when you add a file is for svn diff to print the same differences that you would see if you had added the entire contents of an existing (empty) file.
--no-diff-deleted
Prevents Subversion from printing differences for deleted files. The default behavior when you remove a file is for svn diff to print the same differences that you would see if you had left the file but removed all the content.
--no-ignore
Shows files in the status listing that would
normally be omitted since they match a pattern in the
global-ignores
configuration option
or the svn:ignore
property. See the section called “Config” and the section called “Ignoring Unversioned Items” for more
information.
--no-unlock
Don't automatically unlock files (the default commit behavior is to unlock all files listed as part of the commit). See the section called “Locking” for more information.
--non-interactive
In the case of an authentication failure, or insufficient credentials, prevents prompting for credentials (e.g. username or password). This is useful if you're running Subversion inside of an automated script and it's more appropriate to have Subversion fail than to prompt for more information.
--non-recursive
(-N
)Stops a subcommand from recursing into subdirectories. Most subcommands recurse by default, but some subcommands—usually those that have the potential to remove or undo your local modifications—do not.
--notice-ancestry
Pay attention to ancestry when calculating differences.
--old
ARG
Uses ARG
as the older
target (for use with svn diff).
--password
PASS
Indicates that you are providing your password for authentication on the command line—otherwise, if it is needed, Subversion will prompt you for it.
--quiet
(-q
)Requests that the client print only essential information while performing an operation.
--recursive
(-R
)Makes a subcommand recurse into subdirectories. Most subcommands recurse by default.
--relocate
FROM TO
[PATH...]
Used with the svn switch subcommand, changes the location of the repository that your working copy references. This is useful if the location of your repository changes and you have an existing working copy that you'd like to continue to use. See svn switch for an example.
--revision
(-r
)
REV
Indicates that you're going to supply a revision (or range of revisions) for a particular operation. You can provide revision numbers, revision keywords or dates (in curly braces), as arguments to the revision option. If you wish to provide a range of revisions, you can provide two revisions separated by a colon. For example:
$ svn log -r 1729 $ svn log -r 1729:HEAD $ svn log -r 1729:1744 $ svn log -r {2001-12-04}:{2002-02-17} $ svn log -r 1729:{2002-02-17}
See the section called “Revision Keywords” for more information.
--revprop
Operates on a revision property instead of a
property specific to a file or directory. This option
requires that you also pass a revision with the
--revision
(-r
)
option.
--show-updates
(-u
)Causes the client to display information about which files in your working copy are out-of-date. This doesn't actually update any of your files—it just shows you which files will be updated if you run svn update.
--stop-on-copy
Causes a Subversion subcommand which is traversing the history of a versioned resource to stop harvesting that historical information when a copy—that is, a location in history where that resource was copied from another location in the repository—is encountered.
--strict
Causes Subversion to use strict semantics, a notion which is rather vague unless talking about specific subcommands (namely, svn propget).
--targets
FILENAME
Tells Subversion to get the list of files that you wish to operate on from the filename you provide instead of listing all the files on the command line.
--username
NAME
Indicates that you are providing your username for authentication on the command line—otherwise, if it is needed, Subversion will prompt you for it.
--verbose
(-v
)Requests that the client print out as much information as it can while running any subcommand. This may result in Subversion printing out additional fields, detailed information about every file, or additional information regarding its actions.
--version
Prints the client version info. This information
not only includes the version number of the client,
but also a listing of all repository access modules
that the client can use to access a Subversion
repository. With --quiet
(-q
) it prints only the version number
in a compact form.
--xml
Prints output in XML format.
Here are the various subcommands:
svn add — Add files, directories, or symbolic links.
Schedule files, directories, or symbolic links in your working copy for addition to the repository. They will be uploaded and added to the repository on your next commit. If you add something and change your mind before committing, you can unschedule the addition using svn revert.
--targets FILENAME --non-recursive (-N) --quiet (-q) --config-dir DIR --no-ignore --auto-props --no-auto-props --force
To add a file to your working copy:
$ svn add foo.c A foo.c
When adding a directory, the default behavior of svn add is to recurse:
$ svn add testdir A testdir A testdir/a A testdir/b A testdir/c A testdir/d
You can add a directory without adding its contents:
$ svn add --non-recursive otherdir A otherdir
Normally, the command svn add *
will skip over any directories that are already under
version control. Sometimes, however, you may want to add
every unversioned object in your working copy, including
those hiding deeper down. Passing the
--force
option makes svn
add recurse into versioned directories:
$ svn add * --force A foo.c A somedir/bar.c A otherdir/docs/baz.doc …
svn blame — Show author and revision information in-line for the specified files or URLs.
Show author and revision information in-line for the specified files or URLs. Each line of text is annotated at the beginning with the author (username) and the revision number for the last change to that line.
--revision (-r) ARG --verbose (-v) --incremental --xml --extensions (-x) ARG --force --username ARG --password ARG --no-auth-cache --non-interactive --config-dir ARG
If you want to see blame annotated source for
readme.txt
in your test
repository:
$ svn blame http://svn.red-bean.com/repos/test/readme.txt 3 sally This is a README file. 5 harry You should read this.
Even if svn blame says that Harry last modified readme.txt in revision 5, you'll have to examine exactly what the revision changed to be sure that Harry changed the context of the line—he may have just adjusted the whitespace.
svn cat — Output the contents of the specified files or URLs.
Output the contents of the specified files or URLs. For listing the contents of directories, see svn list.
--revision (-r) REV --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
If you want to view readme.txt in your repository without checking it out:
$ svn cat http://svn.red-bean.com/repos/test/readme.txt This is a README file. You should read this.
If your working copy is out of date (or you have
local modifications) and you want to see the
HEAD
revision of a file in your
working copy, svn cat will
automatically fetch the HEAD
revision
when you give it a path:
$ cat foo.c This file is in my local working copy and has changes that I've made. $ svn cat foo.c Latest revision fresh from the repository!
svn checkout — Check out a working copy from a repository.
Check out a working copy from a repository. If
PATH
is omitted, the
basename of the URL will be used as the destination.
If multiple URLs are given each will be checked out into a
subdirectory of PATH
, with the
name of the subdirectory being the basename of the
URL.
--revision (-r) REV --quiet (-q) --non-recursive (-N) --username USER --password PASS --no-auth-cache --non-interactive --ignore-externals --config-dir DIR
Check out a working copy into a directory called
mine
:
$ svn checkout file:///tmp/repos/test mine A mine/a A mine/b Checked out revision 2. $ ls mine
Check out two different directories into two separate working copies:
$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz A test/a A test/b Checked out revision 2. A quiz/l A quiz/m Checked out revision 2. $ ls quiz test
Check out two different directories into two separate
working copies, but place both into a directory called
working-copies
:
$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz working-copies A working-copies/test/a A working-copies/test/b Checked out revision 2. A working-copies/quiz/l A working-copies/quiz/m Checked out revision 2. $ ls working-copies
If you interrupt a checkout (or something else interrupts your checkout, like loss of connectivity, etc.), you can restart it either by issuing the identical checkout command again, or by updating the incomplete working copy:
$ svn checkout file:///tmp/repos/test test A test/a A test/b ^C svn: The operation was interrupted svn: caught SIGINT $ svn checkout file:///tmp/repos/test test A test/c A test/d ^C svn: The operation was interrupted svn: caught SIGINT $ cd test $ svn update A test/e A test/f Updated to revision 3.
svn cleanup — Recursively clean up the working copy.
Recursively clean up the working copy, removing working copy locks and resuming unfinished operations. If you ever get a “working copy locked” error, run this command to remove stale locks and get your working copy into a usable state again.
If, for some reason, an svn update
fails due to a problem running an external diff program
(e.g. user input or network failure), pass the
--diff3-cmd
to allow cleanup to complete
any merging with your external diff program. You can also
specify any configuration directory with the
--config-dir
option, but you should need
these options extremely infrequently.
svn commit — Send changes from your working copy to the repository.
Send changes from your working copy to the
repository. If you do not supply a log message with your
commit by using either the --file
or
--message
option,
svn will launch your editor for you
to compose a commit message. See the
editor-cmd
section in the section called “Config”.
svn commit will send any lock
tokens that it finds and will release locks on all
PATHS
committed (recursively),
unless --no-unlock
is passed.
If you begin a commit and Subversion launches your editor to compose the commit message, you can still abort without committing your changes. If you want to cancel your commit, just quit your editor without saving your commit message and Subversion will prompt you to either abort the commit, continue with no message, or edit the message again.
--message (-m) TEXT --file (-F) FILE --quiet (-q) --no-unlock --non-recursive (-N) --targets FILENAME --force-log --username USER --password PASS --no-auth-cache --non-interactive --encoding ENC --config-dir DIR
Commit a simple modification to a file with the
commit message on the command line and an implicit
target of your current directory
(“.
”):
$ svn commit -m "added howto section." Sending a Transmitting file data . Committed revision 3.
Commit a modification to the file
foo.c
(explicitly specified on the
command line) with the commit message in a file named
msg
:
$ svn commit -F msg foo.c Sending foo.c Transmitting file data . Committed revision 5.
If you want to use a file that's under version
control for your commit message with
--file
, you need to pass the
--force-log
option:
$ svn commit --file file_under_vc.txt foo.c svn: The log message file is under version control svn: Log message file is a versioned file; use '--force-log' to override $ svn commit --force-log --file file_under_vc.txt foo.c Sending foo.c Transmitting file data . Committed revision 6.
To commit a file scheduled for deletion:
$ svn commit -m "removed file 'c'." Deleting c Committed revision 7.
svn copy — Copy a file or directory in a working copy or in the repository.
Copy a file in a working copy or in the repository.
SRC
and
DST
can each be either a
working copy (WC) path or URL:
Copy and schedule an item for addition (with history).
Immediately commit a copy of WC to URL.
Check out URL into WC, and schedule it for addition.
Complete server-side copy. This is usually used to branch and tag.
You can only copy files within a single repository. Subversion does not support cross-repository copying.
If source or destination is in the repository, or if needed to look up the source revision number.
--message (-m) TEXT --file (-F) FILE --revision (-r) REV --quiet (-q) --username USER --password PASS --no-auth-cache --non-interactive --force-log --editor-cmd EDITOR --encoding ENC --config-dir DIR
Copy an item within your working copy (just schedules the copy—nothing goes into the repository until you commit):
$ svn copy foo.txt bar.txt A bar.txt $ svn status A + bar.txt
Copy an item in your working copy to a URL in the repository (an immediate commit, so you must supply a commit message):
$ svn copy near.txt file:///tmp/repos/test/far-away.txt -m "Remote copy." Committed revision 8.
Copy an item from the repository to your working copy (just schedules the copy—nothing goes into the repository until you commit):
This is the recommended way to resurrect a dead file in your repository!
$ svn copy file:///tmp/repos/test/far-away near-here A near-here
And finally, copying between two URLs:
$ svn copy file:///tmp/repos/test/far-away file:///tmp/repos/test/over-there -m "remote copy." Committed revision 9.
This is the easiest way to “tag” a
revision in your repository—just svn
copy that revision (usually
HEAD
) into your tags directory.
$ svn copy file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "tag tree" Committed revision 12.
And don't worry if you forgot to tag—you can always specify an older revision and tag anytime:
$ svn copy -r 11 file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "Forgot to tag at rev 11" Committed revision 13.
svn delete — Delete an item from a working copy or the repository.
Items specified by PATH
are scheduled
for deletion upon the next commit. Files (and
directories that have not been committed) are
immediately removed from the working copy. The command
will not remove any unversioned or modified items; use
the --force
option to override this
behavior.
Items specified by URL are deleted from the repository via an immediate commit. Multiple URLs are committed atomically.
--force --force-log --message (-m) TEXT --file (-F) FILE --quiet (-q) --targets FILENAME --username USER --password PASS --no-auth-cache --non-interactive --editor-cmd EDITOR --encoding ENC --config-dir DIR
Using svn to delete a file from your working copy deletes your local copy of the file, but merely schedules it to be deleted from the repository. When you commit, the file is deleted in the repository.
$ svn delete myfile D myfile $ svn commit -m "Deleted file 'myfile'." Deleting myfile Transmitting file data . Committed revision 14.
Deleting a URL, however, is immediate, so you have to supply a log message:
$ svn delete -m "Deleting file 'yourfile'" file:///tmp/repos/test/yourfile Committed revision 15.
Here's an example of how to force deletion of a file that has local mods:
$ svn delete over-there svn: Attempting restricted operation for modified resource svn: Use --force to override this restriction svn: 'over-there' has local modifications $ svn delete --force over-there D over-there
svn diff — Display the differences between two revisions or paths.
diff [-c M | -r N[:M]] [TARGET[@REV]...]
diff [-r N[:M]] --old=OLD-TGT[@OLDREV] [--new=NEW-TGT[@NEWREV]] [PATH...]
diff OLD-URL[@OLDREV] NEW-URL[@NEWREV]
Display the differences between two paths. The ways you can use svn diff are:
Use just svn diff'to display local modifications in a working copy.
Display the changes made to
TARGET
s as they are seen in
REV
between two revisions.
TARGET
s may be all working copy
paths or all URL
s. If
TARGET
s are working copy paths,
N
defaults to
BASE
and M
to the working copy; if URL
s,
N
must be specified and
M
defaults to
HEAD
. The “-c M” option
is equivalent to “-r N:M” where N =
M-1
. Using “-c -M” does the
reverse: “-r M:N” where N =
M-1
.
Display the differences between
OLD-TGT
as it was seen in
OLDREV
and
NEW-TGT
as it was seen ain
NEWREV
.
PATH
s, if given, are relative
to OLD-TGT
and
NEW-TGT
and restrict the output
to differences for those paths.
OLD-TGT
and
NEW-TGT
may be working copy
paths or URL[@REV]
.
NEW-TGT
defaults to
OLD-TGT
if not specified.
“-r N” makes OLDREV default to N, -r N:M
makes OLDREV
default to
N
and
NEWREV
default to
M
.
Shorthand for svn diff --old=OLD-URL[@OLDREV] --new=NEW-URL[@NEWREV]
svn diff -r N:M URL is shorthand for svn diff -r N:M --old=URL --new=URL.
svn diff [-r N[:M]] URL1[@N] URL2[@M] is shorthand for svn diff [-r N[:M]] --old=URL1 --new=URL2.
If TARGET
is a URL, then
revs N and M can be given either via the
--revision
or by using
“@” notation as described earlier.
If TARGET
is a working copy
path, then the --revision
option
means:
--revision N:M
The server compares
TARGET
@N
and
TARGET
@M
.
--revision N
The client compares
TARGET
@N
against working copy.
--revision
)The client compares base and working copies of
TARGET
.
If the alternate syntax is used, the server compares
URL1
and
URL2
at revisions
N
and
M
respectively. If either
N
or
M
are omitted, a value of
HEAD
is assumed.
By default, svn diff ignores the
ancestry of files and merely compares the contents of the
two files being compared. If you use
--notice-ancestry
, the ancestry of the
paths in question will be taken into consideration when
comparing revisions (that is, if you run svn
diff on two files with identical contents but
different ancestry you will see the entire contents of the
file as having been removed and added again).
For obtaining differences against anything but
BASE
revision in your working copy
--revision (-r) ARG --change (-c) ARG --old ARG --new ARG --non-recursive (-N) --diff-cmd CMD --extensions (-x) "ARGS" --no-diff-deleted --notice-ancestry --summarize --force --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
Compare BASE
and your working copy
(one of the most popular uses of svn
diff):
$ svn diff COMMITTERS Index: COMMITTERS =================================================================== --- COMMITTERS (revision 4404) +++ COMMITTERS (working copy)
See what changed in the file
COMMITTERS
revision 9115:
$ svn diff -c 9115 COMMITTERS Index: COMMITTERS =================================================================== --- COMMITTERS (revision 3900) +++ COMMITTERS (working copy)
See how your working copy's modifications compare against an older revision:
$ svn diff -r 3900 COMMITTERS Index: COMMITTERS =================================================================== --- COMMITTERS (revision 3900) +++ COMMITTERS (working copy)
Compare revision 3000 to revision 3500 using “@” syntax:
$ svn diff http://svn.collab.net/repos/svn/trunk/COMMITTERS@3000 http://svn.collab.net/repos/svn/trunk/COMMITTERS@3500 Index: COMMITTERS =================================================================== --- COMMITTERS (revision 3000) +++ COMMITTERS (revision 3500) …
Compare revision 3000 to revision 3500 using range notation (you only pass the one URL in this case):
$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk/COMMITTERS Index: COMMITTERS =================================================================== --- COMMITTERS (revision 3000) +++ COMMITTERS (revision 3500)
Compare revision 3000 to revision 3500 of all files in
trunk
using range notation:
$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk
Compare revision 3000 to revision 3500 of only three
files in trunk
using range
notation:
$ svn diff -r 3000:3500 --old http://svn.collab.net/repos/svn/trunk COMMITTERS README HACKING
If you have a working copy, you can obtain the differences without typing in the long URLs:
$ svn diff -r 3000:3500 COMMITTERS Index: COMMITTERS =================================================================== --- COMMITTERS (revision 3000) +++ COMMITTERS (revision 3500)
Use --diff-cmd
CMD
-x
to
pass arguments directly to the external diff
program
$ svn diff --diff-cmd /usr/bin/diff -x "-i -b" COMMITTERS Index: COMMITTERS =================================================================== 0a1,2 > This is a test >
svn export — Export a clean directory tree.
The first form exports a clean directory tree from the
repository specified by URL, at revision
REV
if it is given, otherwise
at HEAD
, into
PATH
. If
PATH
is omitted, the last
component of the URL
is used
for the local directory name.
The second form exports a clean directory tree from
the working copy specified by
PATH1
into
PATH2
. All local changes will
be preserved, but files not under version control will not
be copied.
--revision (-r) REV --quiet (-q) --force --username USER --password PASS --no-auth-cache --non-interactive --non-recursive (-N) --config-dir DIR --native-eol EOL --ignore-externals
Export from your working copy (doesn't print every file and directory):
$ svn export a-wc my-export Export complete.
Export directly from the repository (prints every file and directory):
$ svn export file:///tmp/repos my-export A my-export/test A my-export/quiz … Exported revision 15.
When rolling operating-system-specific release
packages, it can be useful to export a tree which uses a
specific EOL character for line endings. The
--native-eol
option will do this, but it
only affects files that have svn:eol-style =
native
properties attached to them. For
example, to export a tree with all CRLF line endings
(possibly for a Windows .zip file distribution):
$ svn export file:///tmp/repos my-export --native-eol CRLF A my-export/test A my-export/quiz … Exported revision 15.
You can specify LR
,
CR
, or CRLF
as a
line ending type with the --native-eol
option.
svn import — Commit an unversioned file or tree into the repository.
Recursively commit a copy of
PATH
to
URL
. If
PATH
is omitted
“.
” is assumed. Parent
directories are created in the repository as
necessary.
--message (-m) TEXT --file (-F) FILE --quiet (-q) --non-recursive (-N) --username USER --password PASS --no-auth-cache --non-interactive --force-log --editor-cmd EDITOR --encoding ENC --config-dir DIR --auto-props --no-auto-props --ignore-externals
This imports the local directory
myproj
into
trunk/misc
in your repository. The
directory trunk/misc
need not exist
before you import into it—svn
import will recursively create directories for
you.
$ svn import -m "New import" myproj http://svn.red-bean.com/repos/trunk/misc Adding myproj/sample.txt … Transmitting file data ......... Committed revision 16.
Be aware that this will not
create a directory named myproj
in
the repository. If that's what you want, simply add
myproj
to the end of the URL:
$ svn import -m "New import" myproj http://svn.red-bean.com/repos/trunk/misc/myproj Adding myproj/sample.txt … Transmitting file data ......... Committed revision 16.
After importing data, note that the original tree is not under version control. To start working, you still need to svn checkout a fresh working copy of the tree.
svn info — Display information about a local or remote item.
Print information about the working copy paths or URLs specified. The information shown for both may include:
Path
Name
URL
Repository Root
Repository UUID
Revision
Node Kind
Last Changed Author
Last Changed Revision
Last Changed Date
Lock Token
Lock Owner
Lock Created (date)
Lock Expires (date)
Additional kinds of information available only for working copy paths are:
Schedule
Copied From URL
Copied From Rev
Text Last Updated
Properties Last Updated
Checksum
Conflict Previous Base File
Conflict Previous Working File
Conflict Current Base File
Conflict Properties File
--revision (-r) REV --recursive (-R) --targets FILENAME --incremental --xml --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
svn info will show you all the useful information that it has for items in your working copy. It will show information for files:
$ svn info foo.c Path: foo.c Name: foo.c URL: http://svn.red-bean.com/repos/test/foo.c Repository Root: http://svn.red-bean.com/repos/test Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25 Revision: 4417 Node Kind: file Schedule: normal Last Changed Author: sally Last Changed Rev: 20 Last Changed Date: 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003) Text Last Updated: 2003-01-16 21:18:16 -0600 (Thu, 16 Jan 2003) Properties Last Updated: 2003-01-13 21:50:19 -0600 (Mon, 13 Jan 2003) Checksum: d6aeb60b0662ccceb6bce4bac344cb66
It will also show information for directories:
$ svn info vendors Path: vendors URL: http://svn.red-bean.com/repos/test/vendors Repository Root: http://svn.red-bean.com/repos/test Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25 Revision: 19 Node Kind: directory Schedule: normal Last Changed Author: harry Last Changed Rev: 19 Last Changed Date: 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) Properties Last Updated: 2003-01-16 23:39:02 -0600 (Thu, 16 Jan 2003)
svn info also acts on URLs (also note that the file readme.doc in this example is locked, so lock information is also provided):
$ svn info http://svn.red-bean.com/repos/test/readme.doc Path: readme.doc Name: readme.doc URL: http://svn.red-bean.com/repos/test/readme.doc Repository Root: http://svn.red-bean.com/repos/test Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25 Revision: 1 Node Kind: file Schedule: normal Last Changed Author: sally Last Changed Rev: 42 Last Changed Date: 2003-01-14 23:21:19 -0600 (Tue, 14 Jan 2003) Lock Token: opaquelocktoken:14011d4b-54fb-0310-8541-dbd16bd471b2 Lock Owner: harry Lock Created: 2003-01-15 17:35:12 -0600 (Wed, 15 Jan 2003) Lock Comment (1 line): My test lock comment
svn list — List directory entries in the repository.
List each TARGET
file and
the contents of each TARGET
directory as they exist in the repository. If
TARGET
is a working copy path,
the corresponding repository URL will be used.
The default TARGET
is
“.
”, meaning the
repository URL of the current working copy
directory.
With --verbose
, svn
list shows the following fields for each
item:
Revision number of the last commit
Author of the last commit
If locked, the letter “O” (See svn info for details).
Size (in bytes)
Date and time of the last commit
With --xml
, output is in XML format (with
a header and an enclosing document element unless
--incremental
is also specified). All of the
information is present; the --verbose
option
is not accepted.
--revision (-r) REV --verbose (-v) --recursive (-R) --incremental --xml --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
svn list is most useful if you want to see what files a repository has without downloading a working copy:
$ svn list http://svn.red-bean.com/repos/test/support README.txt INSTALL examples/ …
You can pass the --verbose
option for
additional information, rather like the UNIX command
ls -l:
$ svn list --verbose file:///tmp/repos 16 sally 28361 Jan 16 23:18 README.txt 27 sally 0 Jan 18 15:27 INSTALL 24 harry Jan 18 11:27 examples/
For further details, see the section called “svn list”.
svn lock — Lock working copy paths or URLs in the repository, so that no other user can commit changes to them.
Lock each TARGET
. If any
TARGET
is already locked by
another user, print a warning and continue locking the
rest of the TARGET
s. Use
--force
to steal a lock from another user
or working copy.
--targets FILENAME --message (-m) TEXT --file (-F) FILE --force-log --encoding ENC --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR --force
Lock two files in your working copy:
$ svn lock tree.jpg house.jpg 'tree.jpg' locked by user 'harry'. 'house.jpg' locked by user 'harry'.
Lock a file in your working copy that is currently locked by another user:
$ svn lock tree.jpg svn: warning: Path '/tree.jpg is already locked by user 'sally in \ filesystem '/svn/repos/db' $ svn lock --force tree.jpg 'tree.jpg' locked by user 'harry'.
Lock a file without a working copy:
$ svn lock http://svn.red-bean.com/repos/test/tree.jpg 'tree.jpg' locked by user 'harry'.
For further details, see the section called “Locking”.
svn log — Display commit log messages.
Shows log messages from the repository.
If no arguments are supplied, svn
log shows the log messages for all files and
directories inside of (and including) the current working
directory of your working copy. You can refine the
results by specifying a path, one or more revisions, or
any combination of the two. The default revision range
for a local path is BASE:1
.
If you specify a URL alone, then it prints log
messages for everything that the URL contains. If you
add paths past the URL, only messages for those paths
under that URL will be printed. The default revision range
for a URL is HEAD:1
.
With --verbose
, svn log
will also print all affected paths with each log message.
With --quiet
, svn log
will not print the log message body itself (this is
compatible with --verbose
).
Each log message is printed just once, even if more
than one of the affected paths for that revision were
explicitly requested. Logs follow copy history by
default. Use --stop-on-copy
to disable
this behavior, which can be useful for determining branch
points.
--revision (-r) REV --quiet (-q) --verbose (-v) --targets FILENAME --stop-on-copy --incremental --limit NUM --xml --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
You can see the log messages for all the paths that changed in your working copy by running svn log from the top:
$ svn log ------------------------------------------------------------------------ r20 | harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line Tweak. ------------------------------------------------------------------------ r17 | sally | 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) | 2 lines …
Examine all log messages for a particular file in your working copy:
$ svn log foo.c ------------------------------------------------------------------------ r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line Added defines. ------------------------------------------------------------------------ r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines …
If you don't have a working copy handy, you can log a URL:
$ svn log http://svn.red-bean.com/repos/test/foo.c ------------------------------------------------------------------------ r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line Added defines. ------------------------------------------------------------------------ r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines …
If you want several distinct paths underneath the
same URL, you can use the URL [PATH...]
syntax.
$ svn log http://svn.red-bean.com/repos/test/ foo.c bar.c ------------------------------------------------------------------------ r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line Added defines. ------------------------------------------------------------------------ r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line Added new file bar.c ------------------------------------------------------------------------ r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines …
When you're concatenating the results of multiple
calls to the log command, you may want to use the
--incremental
option. svn
log normally prints out a dashed line at the
beginning of a log message, after each subsequent log
message, and following the final log message. If you
ran svn log on a range of two
revisions, you would get this:
$ svn log -r 14:15 ------------------------------------------------------------------------ r14 | … ------------------------------------------------------------------------ r15 | … ------------------------------------------------------------------------
However, if you wanted to gather 2 non-sequential log messages into a file, you might do something like this:
$ svn log -r 14 > mylog $ svn log -r 19 >> mylog $ svn log -r 27 >> mylog $ cat mylog ------------------------------------------------------------------------ r14 | … ------------------------------------------------------------------------ ------------------------------------------------------------------------ r19 | … ------------------------------------------------------------------------ ------------------------------------------------------------------------ r27 | … ------------------------------------------------------------------------
You can avoid the clutter of the double dashed lines in your output by using the incremental option:
$ svn log --incremental -r 14 > mylog $ svn log --incremental -r 19 >> mylog $ svn log --incremental -r 27 >> mylog $ cat mylog ------------------------------------------------------------------------ r14 | … ------------------------------------------------------------------------ r19 | … ------------------------------------------------------------------------ r27 | …
The --incremental
option provides
similar output control when using the
--xml
option.
If you run svn log on a specific path and provide a specific revision and get no output at all
$ svn log -r 20 http://svn.red-bean.com/untouched.txt ------------------------------------------------------------------------
That just means that the path was not modified in that revision. If you log from the top of the repository, or know the file that changed in that revision, you can specify it explicitly:
$ svn log -r 20 touched.txt ------------------------------------------------------------------------ r20 | sally | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line Made a change. ------------------------------------------------------------------------
svn merge — Apply the differences between two sources to a working copy path.
svn merge [-c M | -r N:M] SOURCE[@REV] [WCPATH]
svn merge sourceURL1[@N] sourceURL2[@M] [WCPATH]
svn merge sourceWCPATH1@N sourceWCPATH2@M [WCPATH]
In the first and second forms, the source paths (URLs
in the first form, working copy paths in the second) are
specified at revisions N
and
M
. These are the two sources
to be compared. The revisions default to
HEAD
if omitted.
The -c M
option is equivalent to
-r N:M
where N =
M-1
. Using -c -M
does
the reverse: -r M:N
where
N = M-1
.
In the third form, SOURCE
can be a URL or working copy item, in which case the
corresponding URL is used. This URL, at revisions
N
and
M
, defines the two sources to
be compared.
WCPATH
is the working copy
path that will receive the changes. If
WCPATH
is omitted, a default
value of “.
” is assumed,
unless the sources have identical basenames that match a
file within “.
”: in which
case, the differences will be applied to that file.
Unlike svn diff, the merge command takes the ancestry of a file into consideration when performing a merge operation. This is very important when you're merging changes from one branch into another and you've renamed a file on one branch but not the other.
--revision (-r) REV --change (-c) REV --non-recursive (-N) --quiet (-q) --force --dry-run --diff3-cmd CMD --extensions (-x) ARG --ignore-ancestry --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
Merge a branch back into the trunk (assuming that you have a working copy of the trunk, and that the branch was created in revision 250):
$ svn merge -r 250:HEAD http://svn.red-bean.com/repos/branches/my-branch U myproj/tiny.txt U myproj/thhgttg.txt U myproj/win.txt U myproj/flo.txt
If you branched at revision 23, and you want to merge changes on trunk into your branch, you could do this from inside the working copy of your branch:
$ svn merge -r 23:30 file:///tmp/repos/trunk/vendors U myproj/thhgttg.txt …
To merge changes to a single file:
$ cd myproj $ svn merge -r 30:31 thhgttg.txt U thhgttg.txt
svn mkdir — Create a new directory under version control.
Create a directory with a name given by the final
component of the PATH
or URL.
A directory specified by a working copy
PATH
is scheduled for addition
in the working copy. A directory specified by a URL is
created in the repository via an immediate commit.
Multiple directory URLs are committed atomically. In both
cases all the intermediate directories must already
exist.
svn move — Move a file or directory.
This command moves a file or directory in your working copy or in the repository.
This command is equivalent to an svn copy followed by svn delete.
Subversion does not support moving between working copies and URLs. In addition, you can only move files within a single repository—Subversion does not support cross-repository moving.
Move and schedule a file or directory for addition (with history).
Complete server-side rename.
svn propdel — Remove a property from an item.
This removes properties from files, directories, or
revisions. The first form removes versioned properties in
your working copy, while the second removes unversioned
remote properties on a repository revision
(TARGET
only determines which
repository to access).
svn propedit — Edit the property of one or more items under version control.
Edit one or more properties using your favorite
editor. The first form edits versioned properties in
your working copy, while the second edits unversioned
remote properties on a repository revision
(TARGET
only determines which
repository to access).
--revision (-r) REV --revprop --username USER --password PASS --no-auth-cache --non-interactive --encoding ENC --editor-cmd EDITOR --config-dir DIR
svn propedit makes it easy to modify properties that have multiple values:
$ svn propedit svn:keywords foo.c <svn will launch your favorite editor here, with a buffer open containing the current contents of the svn:keywords property. You can add multiple values to a property easily here by entering one value per line.> Set new value for property 'svn:keywords' on 'foo.c'
svn propget — Print the value of a property.
Print the value of a property on files, directories, or revisions. The first form prints the versioned property of an item or items in your working copy, while the second prints unversioned remote property on a repository revision. See the section called “Properties” for more information on properties.
svn proplist — List all properties.
List all properties on files, directories, or
revisions. The first form lists versioned properties in
your working copy, while the second lists unversioned remote
properties on a repository revision
(TARGET
only determines which
repository to access).
--verbose (-v) --recursive (-R) --revision (-r) REV --quiet (-q) --revprop --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
You can use proplist to see the properties on an item in your working copy:
$ svn proplist foo.c Properties on 'foo.c': svn:mime-type svn:keywords owner
But with the --verbose
flag, svn
proplist is extremely handy as it also shows you the
values for the properties:
$ svn proplist --verbose foo.c Properties on 'foo.c': svn:mime-type : text/plain svn:keywords : Author Date Rev owner : sally
svn propset — Set PROPNAME to PROPVAL on files, directories, or revisions.
svn propset PROPNAME [PROPVAL | -F VALFILE] PATH...
svn propset PROPNAME --revprop -r REV [PROPVAL | -F VALFILE] [TARGET]
Set PROPNAME
to
PROPVAL
on files, directories,
or revisions. The first example creates a versioned, local
property change in the working copy, and the second
creates an unversioned, remote property change on a
repository revision
(TARGET
only determines which
repository to access).
Subversion has a number of “special” properties that affect its behavior. See the section called “Subversion properties” for more on these properties.
--file (-F) FILE --quiet (-q) --revision (-r) REV --targets FILENAME --recursive (-R) --revprop --username USER --password PASS --no-auth-cache --non-interactive --encoding ENC --force --config-dir DIR
Set the mime type on a file:
$ svn propset svn:mime-type image/jpeg foo.jpg property 'svn:mime-type' set on 'foo.jpg'
On a UNIX system, if you want a file to have the executable permission set:
$ svn propset svn:executable ON somescript property 'svn:executable' set on 'somescript'
Perhaps you have an internal policy to set certain properties for the benefit of your coworkers:
$ svn propset owner sally foo.c property 'owner' set on 'foo.c'
If you made a mistake in a log message for a
particular revision and want to change it, use
--revprop
and set svn:log
to the new log message:
$ svn propset --revprop -r 25 svn:log "Journaled about trip to New York." property 'svn:log' set on repository revision '25'
Or, if you don't have a working copy, you can provide a URL.
$ svn propset --revprop -r 26 svn:log "Document nap." http://svn.red-bean.com/repos property 'svn:log' set on repository revision '25'
Lastly, you can tell propset to take its input from a file. You could even use this to set the contents of a property to something binary:
$ svn propset owner-pic -F sally.jpg moo.c property 'owner-pic' set on 'moo.c'
By default, you cannot modify revision properties
in a Subversion repository. Your repository
administrator must explicitly enable revision property
modifications by creating a hook named
pre-revprop-change
. See the section called “Implementing Repository Hooks” for more information on
hook scripts.
svn resolved — Remove “conflicted” state on working copy files or directories.
Remove “conflicted” state on working copy
files or directories. This routine does not semantically
resolve conflict markers; it merely removes
conflict-related artifact files and allows
PATH
to be committed again;
that is, it tells Subversion that the conflicts have been
“resolved”. See the section called “Resolve Conflicts (Merging Others' Changes)” for an in-depth look at
resolving conflicts.
If you get a conflict on an update, your working copy will sprout three new files:
$ svn update C foo.c Updated to revision 31. $ ls foo.c foo.c.mine foo.c.r30 foo.c.r31
Once you've resolved the conflict and
foo.c
is ready to be committed, run
svn resolved to let your working copy
know you've taken care of everything.
You can just remove the conflict files and commit, but svn resolved fixes up some bookkeeping data in the working copy administrative area in addition to removing the conflict files, so we recommend that you use this command.
svn revert — Undo all local edits.
Reverts any local changes to a file or directory and resolves any conflicted states. svn revert will not only revert the contents of an item in your working copy, but also any property changes. Finally, you can use it to undo any scheduling operations that you may have done (e.g. files scheduled for addition or deletion can be “unscheduled”).
Discard changes to a file:
$ svn revert foo.c Reverted foo.c
If you want to revert a whole directory of files,
use the --recursive
flag:
$ svn revert --recursive . Reverted newdir/afile Reverted foo.c Reverted bar.txt
Lastly, you can undo any scheduling operations:
$ svn add mistake.txt whoops A mistake.txt A whoops A whoops/oopsie.c $ svn revert mistake.txt whoops Reverted mistake.txt Reverted whoops $ svn status ? mistake.txt ? whoops
svn revert is inherently dangerous, since its entire purpose is to throw away data—namely, your uncommitted changes. Once you've reverted, Subversion provides no way to get back those uncommitted changes.
If you provide no targets to svn revert, it will do nothing—to protect you from accidentally losing changes in your working copy, svn revert requires you to provide at least one target.
svn status — Print the status of working copy files and directories.
Print the status of working copy files and
directories. With no arguments, it prints only locally
modified items (no repository access). With
--show-updates
, it adds working revision
and server out-of-date information. With
--verbose
, it prints full revision
information on every item.
The first six columns in the output are each one character wide, and each column gives you information about different aspects of each working copy item.
The first column indicates that an item was added, deleted, or otherwise changed.
No modifications.
Item is scheduled for Addition.
Item is scheduled for Deletion.
Item has been modified.
Item has been replaced in your working copy. This means the file was scheduled for deletion, and then a new file with the same name was scheduled for addition in its place.
The contents (as opposed to the properties) of the item conflict with updates received from the repository.
Item is present because of an externals definition.
Item is being ignored (e.g. with the
svn:ignore
property).
Item is not under version control.
Item is missing (e.g. you moved or deleted it without using svn). This also indicates that a directory is incomplete (a checkout or update was interrupted).
Item is versioned as one kind of object (file, directory, link), but has been replaced by different kind of object.
The second column tells the status of a file's or directory's properties.
No modifications.
Properties for this item have been modified.
Properties for this item are in conflict with property updates received from the repository.
The third column is populated only if the working copy directory is locked. (See the section called “Sometimes You Just Need to Clean Up”.)
Item is not locked.
Item is locked.
The fourth column is populated only if the item is scheduled for addition-with-history.
No history scheduled with commit.
History scheduled with commit.
The fifth column is populated only if the item is switched relative to its parent (see the section called “Traversing Branches”).
Item is a child of its parent directory.
Item is switched.
The sixth column is populated with lock information.
When --show-updates
is used,
the file is not locked. If
--show-updates
is
not used, this merely means that
the file is not locked in this working copy.
File is locked in this working copy.
File is locked either by another user or in
another working copy. This only appears when
--show-updates
is used.
File was locked in this working copy, but the
lock has been “stolen” and is invalid.
The file is currently locked in the repository. This
only appears when --show-updates
is
used.
File was locked in this working copy, but the
lock has been “broken” and is invalid.
The file is no longer locked This only appears when
--show-updates
is used.
The out-of-date information appears in the seventh
column (only if you pass the
--show-updates
option).
The item in your working copy is up-to-date.
A newer revision of the item exists on the server.
The remaining fields are variable width and
delimited by spaces. The working revision is the next
field if the --show-updates
or
--verbose
options are passed.
If the --verbose
option is passed,
the last committed revision and last committed author
are displayed next.
The working copy path is always the final field, so it can include spaces.
--show-updates (-u) --verbose (-v) --non-recursive (-N) --quiet (-q) --no-ignore --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR --ignore-externals
This is the easiest way to find out what changes you have made to your working copy:
$ svn status wc M wc/bar.c A + wc/qax.c
If you want to find out what files in your working
copy are out-of-date, pass the
--show-updates
option (this will
not make any changes to your
working copy). Here you can see that
wc/foo.c
has changed in the
repository since we last updated our working
copy:
$ svn status --show-updates wc M 965 wc/bar.c * 965 wc/foo.c A + 965 wc/qax.c Status against revision: 981
--show-updates
only places an asterisk next to
items that are out of date (that is, items that will be
updated from the repository if you run svn
update). --show-updates
does
not cause the status listing to
reflect the repository's version of the item (although
you can see the revision number in the repository by
passing the --verbose
option).
And finally, the most information you can get out of the status subcommand:
$ svn status --show-updates --verbose wc M 965 938 sally wc/bar.c * 965 922 harry wc/foo.c A + 965 687 harry wc/qax.c 965 687 harry wc/zig.c Head revision: 981
For many more examples of svn status, see the section called “See an overview of your changes”.
svn switch — Update working copy to a different URL.
The first variant of this subcommand (without the
--relocate
option) updates your working
copy to point to a new URL—usually a URL which
shares a common ancestor with your working copy, although
not necessarily. This is the Subversion way to move a
working copy to a new branch. See the section called “Traversing Branches” for an in-depth look
at switching.
The --relocate
option causes svn
switch to do something different: it updates
your working copy to point to the
same repository directory, only at a different
URL (typically because an administrator has moved the
repository to another server, or to another URL on the
same server).
--revision (-r) REV --non-recursive (-N) --quiet (-q) --diff3-cmd CMD --relocate FROM TO --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR
If you're currently inside the directory
vendors
, which was branched to
vendors-with-fix
, and you'd like to
switch your working copy to that branch:
$ svn switch http://svn.red-bean.com/repos/branches/vendors-with-fix . U myproj/foo.txt U myproj/bar.txt U myproj/baz.c U myproj/qux.c Updated to revision 31.
And to switch back, just provide the URL to the location in the repository from which you originally checked out your working copy:
$ svn switch http://svn.red-bean.com/repos/trunk/vendors . U myproj/foo.txt U myproj/bar.txt U myproj/baz.c U myproj/qux.c Updated to revision 31.
You can just switch part of your working copy to a branch if you don't want to switch your entire working copy.
Sometimes an administrator might change the
“base location” of your repository—in
other words, the contents of the repository doesn't
change, but the main URL used to reach the root of the
repository does. For example, the hostname may change,
the URL scheme may change, or any part of the URL which leads to the
repository itself may change. Rather than check out a new working
copy, you can have the svn switch
command “rewrite” the beginnings of all the
URLs in your working copy. Use the
--relocate
option to do the substitution.
No file contents are changed, nor is the repository
contacted. It's similar to running a Perl script over
your working copy .svn/
directories
which runs s/OldRoot/NewRoot/.
$ svn checkout file:///tmp/repos test A test/a A test/b … $ mv repos newlocation $ cd test/ $ svn update svn: Unable to open an ra_local session to URL svn: Unable to open repository 'file:///tmp/repos' $ svn switch --relocate file:///tmp/repos file:///tmp/newlocation . $ svn update At revision 3.
Be careful when using the
--relocate
option. If you mistype the
argument, you might end up creating nonsensical URLs
within your working copy that render the whole workspace
unusable and tricky to fix. It's also important to
understand exactly when one should or shouldn't use
--relocate
. Here's the rule of
thumb:
If the working copy needs to reflect a new directory within the repository, then use just svn switch.
If the working copy still reflects the same repository directory, but the location of the repository itself has changed, then use svn switch --relocate.
svn unlock — Unlock working copy paths or URLs.
Unlock each TARGET
. If any
TARGET
is either locked by
another user or no valid lock token exists in the working
copy, print a warning and continue unlocking the rest of
the TARGET
s. Use
--force
to break a lock belonging to
another user or working copy.
--targets FILENAME --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR --force
Unlock two files in your working copy:
$ svn unlock tree.jpg house.jpg 'tree.jpg' unlocked. 'house.jpg' unlocked.
Unlock a file in your working copy that is currently locked by another user:
$ svn unlock tree.jpg svn: 'tree.jpg' is not locked in this working copy $ svn unlock --force tree.jpg 'tree.jpg' unlocked.
Unlock a file without a working copy:
$ svn unlock http://svn.red-bean.com/repos/test/tree.jpg 'tree.jpg unlocked.
For further details, see the section called “Locking”.
svn update — Update your working copy.
svn update brings changes from the
repository into your working copy. If no revision is given,
it brings your working copy up-to-date with the
HEAD
revision. Otherwise, it
synchronizes the working copy to the revision given by the
--revision
option. As part of the
synchronization, svn update also
removes any stale locks (see the section called “Sometimes You Just Need to Clean Up”) found in the
working copy.
For each updated item, it prints a line that starts with a character reporting the action taken. These characters have the following meaning:
Added
Deleted
Updated
Conflicted
Merged
A character in the first column signifies an update to the actual file, while updates to the file's properties are shown in the second column.
--revision (-r) REV --non-recursive (-N) --quiet (-q) --no-ignore --incremental --diff3-cmd CMD --username USER --password PASS --no-auth-cache --non-interactive --config-dir DIR --ignore-externals
Pick up repository changes that have happened since your last update:
$ svn update A newdir/toggle.c A newdir/disclose.c A newdir/launch.c D newdir/README Updated to revision 32.
You can also “update” your working copy to an older revision (Subversion doesn't have the concept of “sticky” files like CVS does; see Appendix B, Subversion for CVS Users):
$ svn update -r30 A newdir/README D newdir/toggle.c D newdir/disclose.c D newdir/launch.c U foo.c Updated to revision 30.
If you want to examine an older revision of a single file, you may want to use svn cat instead—it won't change your working copy.
svnadmin is the administrative tool for monitoring and repairing your Subversion repository. For detailed information, see the section called “svnadmin”.
Since svnadmin works via direct repository access (and thus can only be used on the machine that holds the repository), it refers to the repository with a path, not a URL.
--bdb-log-keep
(Berkeley DB specific) Disable automatic log removal of database log files. Having these log files around can be convenient if you need to restore from a catastrophic repository failure.
--bdb-txn-nosync
(Berkeley DB specific) Disables fsync when
committing database transactions. Used with the
svnadmin create command to create a
Berkeley DB backed repository with
DB_TXN_NOSYNC
enabled (which improves
speed but has some risks associated with it).
--bypass-hooks
Bypass the repository hook system.
--clean-logs
Removes unused Berkeley DB logs.
--force-uuid
By default, when loading data into repository that
already contains revisions, svnadmin
will ignore the UUID
from the dump
stream. This option will cause the repository's
UUID
to be set to the
UUID
from the stream.
--ignore-uuid
By default, when loading an empty repository,
svnadmin will ignore the
UUID
from the dump stream. This
option will force that UUID to be ignored (useful for
overriding your configuration file if it has
--force-uuid
set).
--incremental
Dump a revision only as a diff against the previous revision, instead of the usual fulltext.
--parent-dir
DIR
When loading a dump file, root paths at
DIR
instead of
/
.
--revision
(-r
)
ARG
Specify a particular revision to operate on.
--quiet
Do not show normal progress—show only errors.
--use-post-commit-hook
When loading a dump file, run the repository's post-commit hook after finalizing each newly loaded revision.
--use-pre-commit-hook
When loading a dump file, run the repository's pre-commit hook before finalizing each newly loaded revision. If the hook fails, abort the commit and terminate the load process.
svnadmin create — Create a new, empty repository.
Create a new, empty repository at the path provided.
If the provided directory does not exist, it will be
created for you.[59] As of
Subversion 1.2, svnadmin creates new
repositories with the fsfs
filesystem
backend by default.
Creating a new repository is just this easy:
$ svnadmin create /usr/local/svn/repos
In Subversion 1.0, a Berkeley DB repository is always
created. In Subversion 1.1, a Berkeley DB repository is
the default repository type, but an FSFS repository can be
created using the --fs-type
option:
$ svnadmin create /usr/local/svn/repos --fs-type fsfs
svnadmin deltify — Deltify changed paths in a revision range.
svnadmin deltify exists in current versions of Subversion only for historical reasons. This command is deprecated and no longer needed.
It dates from a time when Subversion offered administrators greater control over compression strategies in the repository. This turned out to be a lot of complexity for very little gain, and this “feature” was deprecated.
svnadmin dump — Dump the contents of filesystem to stdout.
Dump the contents of filesystem to stdout in a
“dumpfile” portable format, sending feedback
to stderr. Dump revisions
LOWER
rev through
UPPER
rev. If no revisions are
given, dump all revision trees. If only
LOWER
is given, dump that one
revision tree. See the section called “Migrating Repository Data Elsewhere”
for a practical use.
By default, the Subversion dumpfile stream contains a single revision (the first revision in the requested revision range) in which every file and directory in the repository in that revision is presented as if that whole tree was added at once, followed by other revisions (the remainder of the revisions in the requested range) which contain only the files and directories which were modified in those revisions. For a modified file, the complete fulltext representation of its contents, as well as all of its properties, are presented in the dumpfile; for a directory, all of its properties are presented.
There are two useful options which modify the dumpfile
generator's behavior. The first is the
--incremental
option, which simply causes
that first revision in the dumpfile stream to contain only
the files and directories modified in that revision,
instead of being presented as the addition of a new tree,
and in exactly the same way that every other revision in
the dumpfile is presented. This is useful for generating
a relatively small dumpfile to be loaded into another
repository which already has the files and directories
that exist in the original repository.
The second useful option is --deltas
.
This option causes svnadmin dump to,
instead of emitting fulltext representations of file
contents and property lists, emit only deltas of those
items against their previous versions. This reduces (in
some cases, drastically) the size of the dumpfile that
svnadmin dump creates. There are, however,
disadvantages to using this option—deltified
dumpfiles are more CPU intensive to create, cannot be
operated on by svndumpfilter, and tend
not to compress as well as their non-deltified counterparts
when using third-party tools like gzip
and bzip2.
Dump your whole repository:
$ svnadmin dump /usr/local/svn/repos SVN-fs-dump-format-version: 1 Revision-number: 0 * Dumped revision 0. Prop-content-length: 56 Content-length: 56 …
Incrementally dump a single transaction from your repository:
$ svnadmin dump /usr/local/svn/repos -r 21 --incremental * Dumped revision 21. SVN-fs-dump-format-version: 1 Revision-number: 21 Prop-content-length: 101 Content-length: 101 …
svnadmin help — Help!
svnadmin hotcopy — Make a hot copy of a repository.
This subcommand makes a full “hot” backup
of your repository, including all hooks, configuration
files, and, of course, database files. If you pass the
--clean-logs
option,
svnadmin will perform a hotcopy of your
repository, and then remove unused Berkeley DB logs from
the original repository. You can run this command at any
time and make a safe copy of the repository, regardless of
whether other processes are using the repository.
--clean-logs
As described in the section called “Berkeley DB”, hot-copied Berkeley DB repositories are not portable across operating systems, nor will they work on machines with a different “endianness” than the machine where they were created.
svnadmin list-dblogs — Ask
Berkeley DB which log files exist for a given Subversion
repository (applies only to repositories using the
bdb
backend).
Berkeley DB creates logs of all changes to the
repository, which allow it to recover in the face of
catastrophe. Unless you enable
DB_LOG_AUTOREMOVE
, the log files
accumulate, although most are no longer used and can be
deleted to reclaim disk space. See the section called “Managing Disk Space” for more
information.
svnadmin list-unused-dblogs — Ask Berkeley DB which log files can be safely
deleted (applies only to repositories using the
bdb
backend).
Berkeley DB creates logs of all changes to the
repository, which allow it to recover in the face of
catastrophe. Unless you enable
DB_LOG_AUTOREMOVE
, the log files
accumulate, although most are no longer used and can be
deleted to reclaim disk space. See the section called “Managing Disk Space” for more
information.
svnadmin load — Read a “dumpfile”-formatted stream from stdin.
Read a “dumpfile”-formatted stream from stdin, committing new revisions into the repository's filesystem. Send progress feedback to stdout.
--quiet (-q) --ignore-uuid --force-uuid --use-pre-commit-hook --use-post-commit-hook --parent-dir
This shows the beginning of loading a repository from a backup file (made, of course, with svnadmin dump):
$ svnadmin load /usr/local/svn/restored < repos-backup <<< Started new txn, based on original revision 1 * adding path : test ... done. * adding path : test/a ... done. …
Or if you want to load into a subdirectory:
$ svnadmin load --parent-dir new/subdir/for/project /usr/local/svn/restored < repos-backup <<< Started new txn, based on original revision 1 * adding path : test ... done. * adding path : test/a ... done. …
svnadmin lslocks — Print descriptions of all locks.
This lists the one locked file in the repository at
/svn/repos
:
$ svnadmin lslocks /svn/repos Path: /tree.jpg UUID Token: opaquelocktoken:ab00ddf0-6afb-0310-9cd0-dda813329753 Owner: harry Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005) Expires: Comment (1 line): Rework the uppermost branches on the bald cypress in the foreground.
svnadmin lstxns — Print the names of all uncommitted transactions.
Print the names of all uncommitted transactions. See the section called “Removing dead transactions” for information on how uncommitted transactions are created and what you should do with them.
svnadmin recover — Bring a repository database back into a
consistent state (applies only to repositories using the
bdb
backend). In addition, if
repos/conf/passwd
does not exist, it
will create a default password file .
Run this command if you get an error indicating that your repository needs to be recovered.
Recover a hung repository:
$ svnadmin recover /usr/local/svn/repos/ Repository lock acquired. Please wait; recovering the repository may take some time... Recovery completed. The latest repos revision is 34.
Recovering the database requires an exclusive lock on the repository. (This is a “database lock”; see The three meanings of “lock”.) If another process is accessing the repository, then svnadmin recover will error:
$ svnadmin recover /usr/local/svn/repos svn: Failed to get exclusive repository access; perhaps another process such as httpd, svnserve or svn has it open? $
The --wait
option, however, will
cause svnadmin recover to wait
indefinitely for other processes to disconnect:
$ svnadmin recover /usr/local/svn/repos --wait Waiting on repository lock; perhaps another process has it open? ### time goes by… Repository lock acquired. Please wait; recovering the repository may take some time... Recovery completed. The latest repos revision is 34.
svnadmin rmtxns — Delete transactions from a repository.
Delete outstanding transactions from a repository. This is covered in detail in the section called “Removing dead transactions”.
Remove named transactions:
$ svnadmin rmtxns /usr/local/svn/repos/ 1w 1x
Fortunately, the output of lstxns works great as the input for rmtxns:
$ svnadmin rmtxns /usr/local/svn/repos/ `svnadmin lstxns /usr/local/svn/repos/`
Which will remove all uncommitted transactions from your repository.
svnadmin setlog — Set the log-message on a revision.
Set the log-message on revision REVISION to the contents of FILE.
This is similar to using svn propset
--revprop to set the svn:log
property
on a revision, except that you can also use the option
--bypass-hooks
to avoid running any pre- or
post-commit hooks, which is useful if the modification of
revision properties has not been enabled in the pre-revprop-change
hook.
Revision properties are not under version control, so this command will permanently overwrite the previous log message.
svnadmin verify — Verify the data stored in the repository.
Run this command if you wish to verify the integrity of your repository. This basically iterates through all revisions in the repository by internally dumping all revisions and discarding the output—it's a good idea to run this on a regular basis to guard against latent hard disk failures and “bitrot”. If this command fails—which it will do at the first sign of a problem—that means that your repository has at least one corrupted revision and you should restore the corrupted revision from a backup (you did make a backup, didn't you?).
svnlook is a command-line utility for examining different aspects of a Subversion repository. It does not make any changes to the repository—it's just used for “peeking”. svnlook is typically used by the repository hooks, but a repository administrator might find it useful for diagnostic purposes.
Since svnlook works via direct repository access (and thus can only be used on the machine that holds the repository), it refers to the repository with a path, not a URL.
If no revision or transaction is specified, svnlook defaults to the youngest (most recent) revision of the repository.
Options in svnlook are global, just like in svn and svnadmin; however, most options only apply to one subcommand since the functionality of svnlook is (intentionally) limited in scope.
--no-diff-deleted
Prevents svnlook from printing differences for deleted files. The default behavior when a file is deleted in a transaction/revision is to print the same differences that you would see if you had left the file but removed all the content.
--revision
(-r
)Specify a particular revision number that you wish to examine.
--revprop
Operates on a revision property instead of a
property specific to a file or directory. This option
requires that you also pass a revision with the
--revision
(-r
)
option.
--transaction
(-t
)Specify a particular transaction ID that you wish to examine.
--show-ids
Show the filesystem node revision IDs for each path in the filesystem tree.
svnlook cat — Print the contents of a file.
This shows the contents of a file in transaction
ax8
, located at
/trunk/README
:
$ svnlook cat -t ax8 /usr/local/svn/repos /trunk/README Subversion, a version control system. ===================================== $LastChangedDate: 2003-07-17 10:45:25 -0500 (Thu, 17 Jul 2003) $ Contents: I. A FEW POINTERS II. DOCUMENTATION III. PARTICIPATING IN THE SUBVERSION COMMUNITY …
svnlook changed — Print the paths that were changed.
Print the paths that were changed in a particular revision or transaction, as well as “svn update-style” status letters in the first two columns:
A
'Item added to repository.
D
'Item deleted from repository.
U
'File contents changed.
U
'Properties of item changed. Note the leading space.
UU
'File contents and properties changed.
Files and directories can be distinguished, as directory
paths are displayed with a trailing '/
'
character.
This shows a list of all the changed files and
directories in revision 39 of a test repository. Note
that the first changed item is a directory, as evidenced
by the trailing /
:
$ svnlook changed -r 39 /usr/local/svn/repos A trunk/vendors/deli/ A trunk/vendors/deli/chips.txt A trunk/vendors/deli/sandwich.txt A trunk/vendors/deli/pickle.txt U trunk/vendors/baker/bagel.txt U trunk/vendors/baker/croissant.txt UU trunk/vendors/baker/pretzel.txt D trunk/vendors/baker/baguette.txt
svnlook diff — Print differences of changed files and properties.
This shows a newly added (empty) file, a deleted file, and a copied file:
$ svnlook diff -r 40 /usr/local/svn/repos/ Copied: egg.txt (from rev 39, trunk/vendors/deli/pickle.txt) Added: trunk/vendors/deli/soda.txt ============================================================================== Modified: trunk/vendors/deli/sandwich.txt ============================================================================== --- trunk/vendors/deli/sandwich.txt (original) +++ trunk/vendors/deli/sandwich.txt 2003-02-22 17:45:04.000000000 -0600 @@ -0,0 +1 @@ +Don't forget the mayo! Modified: trunk/vendors/deli/logo.jpg ============================================================================== (Binary files differ) Deleted: trunk/vendors/deli/chips.txt ============================================================================== Deleted: trunk/vendors/deli/pickle.txt ==============================================================================
If a file has a non-textual
svn:mime-type
property, then the
differences are not explicitly shown.
svnlook dirs-changed — Print the directories that were themselves changed.
svnlook help — Help!
svnlook history — Print information about the history of a path in the repository (or the root directory if no path is supplied).
Print information about the history of a path in the repository (or the root directory if no path is supplied).
This shows the history output for the path
/tags/1.0
as of revision 20 in our
sample repository.
$ svnlook history -r 20 /usr/local/svn/repos /tags/1.0 --show-ids REVISION PATH <ID> -------- --------- 19 /tags/1.0 <1.2.12> 17 /branches/1.0-rc2 <1.1.10> 16 /branches/1.0-rc2 <1.1.x> 14 /trunk <1.0.q> 13 /trunk <1.0.o> 11 /trunk <1.0.k> 9 /trunk <1.0.g> 8 /trunk <1.0.e> 7 /trunk <1.0.b> 6 /trunk <1.0.9> 5 /trunk <1.0.7> 4 /trunk <1.0.6> 2 /trunk <1.0.3> 1 /trunk <1.0.2>
svnlook lock — If a lock exists on a path in the repository, describe it.
Print all information available for the lock at
PATH_IN_REPOS
. If
PATH_IN_REPOS
is not locked,
print nothing.
This describes the lock on the file
tree.jpg
.
$ svnlook lock /svn/repos tree.jpg UUID Token: opaquelocktoken:ab00ddf0-6afb-0310-9cd0-dda813329753 Owner: harry Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005) Expires: Comment (1 line): Rework the uppermost branches on the bald cypress in the foreground.
svnlook proplist — Print the names and values of versioned file and directory properties.
List the properties of a path in the repository. With
--verbose
, show the property values too.
This shows the names of properties set on the file
/trunk/README
in the
HEAD
revision:
$ svnlook proplist /usr/local/svn/repos /trunk/README original-author svn:mime-type
This is the same command as in the previous example, but this time showing the property values as well:
$ svnlook --verbose proplist /usr/local/svn/repos /trunk/README original-author : fitz svn:mime-type : text/plain
svnlook tree — Print the tree.
svnsync is the Subversion remote repository mirroring tool. Put simply, it allows you to replay the revisions of one repository into another one.
In any mirroring scenario, there are two repositories: the source repository, and the mirror (or “sink”) repository. The source repository is the repository from which svnsync pulls revisions. The mirror repository is the destination for the revisions pulled from the source repository. Each of the repositories may be local or remote—they are only ever addressed by their URLs.
The svnsync process requires only read access to the source repository; it never attempts to modify it. But obviously, svnsync requires both read and write access to the mirror repository.
svnsync is very sensitive to changes made in the mirror repository that weren't made as part of a mirroring operation. To prevent this from happening, it's best if the svnsync process is the only process permitted to modify the mirror repository.
--config-dir
DIR
Instructs Subversion to read configuration
information from the specified directory instead of the
default location (.subversion
in
the user's home directory).
--no-auth-cache
Prevents caching of authentication information (e.g. username and password) in the Subversion administrative directories.
--non-interactive
In the case of an authentication failure, or insufficient credentials, prevents prompting for credentials (e.g. username or password). This is useful if you're running Subversion inside of an automated script and it's more appropriate to have Subversion fail than to prompt for more information.
--password
PASS
Indicates that you are providing your password for authentication on the command line—otherwise, if it is needed, Subversion will prompt you for it.
--username
NAME
Indicates that you are providing your username for authentication on the command line—otherwise, if it is needed, Subversion will prompt you for it.
Here are the various subcommands:
svnsync copy-revprops — Copy all revision properties for a given revision from the source repository to the mirror repository.
Because Subversion revision properties can be changed at any time, it's possible that the properties for some revision might be changed after that revision has already been synchronized to another repository. Because the svnsync synchronize command operates only on the range of revisions that have not yet been synchronized, it won't notice a revision property change outside that range. Left as is, this causes a deviation in the values of that revision's properties between the source and mirror repositories. svnsync copy-revprops is the answer to this problem. Use it to re-synchronize the revision properties for a particular revision.
svnsync initialize — Initialize a destination repository for synchronization from another repository.
svnsync initialize verifies that a repository meets the requirements of a new mirror repository—that it has no previous existing version history, and that it allows revision property modifications—and records the initial administrative information which associates the mirror repository with the source repository. This is the first svnsync operation you run on a would-be mirror repository.
Fail to initialize a mirror repository due to inability to modify revision properties:
$ svnsync initialize file:///opt/svn/repos-mirror http://svn.example.com/repos svnsync: Repository has not been enabled to accept revision propchanges; ask the administrator to create a pre-revprop-change hook $
Initialize a repository as a mirror, having already created a pre-revprop-change hook which permits all revision property changes:
$ svnsync initialize file:///opt/svn/repos-mirror http://svn.example.com/repos Copied properties for revision 0. $
svnsync synchronize — Transfer all pending revisions from the source repository to the mirror repository.
The svnsync synchronize command does all the heavy lifting of a repository mirroring operation. After consulting with the mirror repository to see which revisions have already been copied into it, it then begins copying any not-yet-mirrored revisions from the source repository.
svnsync synchronize can be gracefully cancelled and restarted.
Copy unsynchronized revisions from the source repository to the mirror repository:
$ svnsync synchronize file:///opt/svn/repos-mirror Committed revision 1. Copied properties for revision 1. Committed revision 2. Copied properties for revision 2. Committed revision 3. Copied properties for revision 3. … Committed revision 45. Copied properties for revision 45. Committed revision 46. Copied properties for revision 46. Committed revision 47. Copied properties for revision 47. $
svnserve allows access to Subversion repositories using Subversion's custom network protocol.
You can run svnserve as a standalone
server process (for clients that are using the
svn://
access method); you can have a daemon
such as inetd or xinetd
launch it for you on demand (also for
svn://
), or you can have
sshd launch it on demand for the
svn+ssh://
access method.
Regardless of the access method, once the client has
selected a repository by transmitting its URL,
svnserve reads a file named
conf/svnserve.conf
in the repository
directory to determine repository-specific settings such as
what authentication database to use and what authorization
policies to apply. See the section called “svnserve, a custom server” for details of the
svnserve.conf
file.
Unlike the previous commands we've described, svnserve has no subcommands—svnserve is controlled exclusively by options.
--daemon
(-d
)Causes svnserve to run in daemon mode. svnserve backgrounds itself and accepts and serves TCP/IP connections on the svn port (3690, by default).
--listen-port
=PORT
Causes svnserve to listen on
PORT
when run in daemon mode.
(FreeBSD daemons only listen on tcp6 by default—this
option tells them to also listen on tcp4.)
--listen-host
=HOST
Causes svnserve to listen on the
interface specified by HOST
,
which may be either a hostname or an IP address.
--foreground
When used together with -d
, this
option causes svnserve to stay in the
foreground. This option is mainly useful for
debugging.
--inetd
(-i
)Causes svnserve to use the stdin/stdout file descriptors, as is appropriate for a daemon running out of inetd.
--help
(-h
)Displays a usage summary and exits.
--version
Displays version information, a list of repository back-end modules available, and exits.
--root
=ROOT
(-r
=ROOT
)Sets the virtual root for repositories served by svnserve. The pathname in URLs provided by the client will be interpreted relative to this root, and will not be allowed to escape this root.
--tunnel
(-t
)Causes svnserve to run in tunnel
mode, which is just like the inetd
mode of operation (both modes serve one connection over
stdin/stdout, then exit), except that the connection is
considered to be pre-authenticated with the username of
the current uid. This flag is automatically passed for
you by the client when running over a tunnel agent such
as ssh. That means there's rarely
any need for you to pass this
option to svnserve. So if you find
yourself typing svnserve --tunnel
on
the command line, and wondering what to do next, see
the section called “Tunneling over SSH”.
--tunnel-user NAME
Used in conjunction with the --tunnel
option; tells svnserve to assume that
NAME
is the authenticated
user, rather than the UID of the svnserve
process. Useful for users wishing to share a single
system account over SSH, but maintaining separate commit
identities.
--threads
(-T
)When running in daemon mode, causes svnserve to spawn a thread instead of a process for each connection (e.g. for when running on Windows). The svnserve process still backgrounds itself at startup time.
--listen-once
(-X
)Causes svnserve to accept one connection on the svn port, serve it, and exit. This option is mainly useful for debugging.
svnversion — Summarize the local revision(s) of a working copy.
svnversion is a program for summarizing the revision mixture of a working copy. The resultant revision number, or revision range, is written to standard output.
It's common to use this output in your build process when defining the version number of your program.
TRAIL_URL
, if present, is the
trailing portion of the URL used to determine if
WC_PATH
itself is switched
(detection of switches within
WC_PATH
does not rely on
TRAIL_URL
).
When WC_PATH
is not defined,
the current directory will be used as the working copy path.
TRAIL_URL
cannot be defined if
WC_PATH
is not explicitly
given.
Like svnserve, svnversion has no subcommands, it only has options.
--no-newline
(-n
)Omit the usual trailing newline from the output.
--committed
(-c
)Use the last-changed revisions rather than the current (i.e., highest locally available) revisions.
--help
(-h
)Print a help summary.
--version
Print the version of svnversion and exit with no error.
If the working copy is all at the same revision (for example, immediately after an update), then that revision is printed out:
$ svnversion 4168
You can add TRAIL_URL
to make
sure that the working copy is not switched from what you
expect. Note that the WC_PATH
is required in this command:
$ svnversion . /repos/svn/trunk 4168
For a mixed-revision working copy, the range of revisions present is printed:
$ svnversion 4123:4168
If the working copy contains modifications, a trailing "M" is added:
$ svnversion 4168M
If the working copy is switched, a trailing "S" is added:
$ svnversion 4168S
Thus, here is a mixed-revision, switched working copy containing some local modifications:
$ svnversion 4212:4168MS
If invoked on a directory that is not a working copy, svnversion assumes it is an exported working copy and prints "exported":
$ svnversion exported
mod_dav_svn
Configuration
Directives — Apache configuration
directives for serving Subversion repositories through Apache
HTTP Server.
This section briefly describes each of the Subversion Apache configuration directives. For an in-depth description of configuring Apache with Subversion, see the section called “httpd, the Apache HTTP server”.)
DAV svn
This directive must be included in any
Directory
or
Location
block for a Subversion
repository. It tells httpd to use the Subversion
backend for mod_dav to handle all requests.
SVNAutoversioning On
This directive allows write requests from WebDAV
clients to result in automatic commits. A generic log
message is auto-generated and attached to each
revision. If you enable Autoversioning, you'll likely
want to set ModMimeUsePathInfo On
so that mod_mime
can set
svn:mime-type
to the correct
mime-type automatically (as best as
mod_mime
is able to, of course).
For more information, see Appendix C, WebDAV and Autoversioning
SVNPath
This directive specifies the location in the
filesystem for a Subversion repository's files. In a
configuration block for a Subversion repository,
either this directive or
SVNParentPath
must be present, but
not both.
SVNSpecialURI
Specifies the URI component (namespace) for
special Subversion resources. The default is
“!svn
”, and most
administrators will never use this directive. Only
set this if there is a pressing need to have a file
named !svn
in your repository. If
you change this on a server already in use, it will
break all of the outstanding working copies and your
users will hunt you down with pitchforks and flaming
torches.
SVNReposName
Specifies the name of a Subversion repository for
use in HTTP GET
responses. This
value will be prepended to the title of all directory
listings (which are served when you navigate to a
Subversion repository with a web browser). This
directive is optional.
SVNIndexXSLT
Specifies the URI of an XSL transformation for directory indexes. This directive is optional.
SVNParentPath
Specifies the location in the filesystem of a
parent directory whose child directories are
Subversion repositories. In a configuration block for
a Subversion repository, either this directive or
SVNPath
must be present, but not
both.
SVNPathAuthz
Control path-based authorization by enabling or disabling subrequests. See the section called “Disabling Path-based Checks” for details.
Subversion allows users to invent arbitrarily-named
versioned properties on files and directories, as well as
unversioned properties on revisions. The only restriction is on
properties whose names begin with svn:
(those
are reserved for Subversion's own use). While these properties
may be set by users to control Subversion's behavior, users may
not invent new svn:
properties.
svn:executable
If present on a file, the client will make the file executable in Unix-hosted working copies. See the section called “File Executability”.
svn:mime-type
If present on a file, the value indicates the file's mime-type. This allows the client to decide whether line-based contextual merging is safe to perform during updates, and can also affect how the file behaves when fetched via web browser. See the section called “File Content Type”.
svn:ignore
If present on a directory, the value is a list of unversioned file patterns to be ignored by svn status and other subcommands. See the section called “Ignoring Unversioned Items”
svn:keywords
If present on a file, the value tells the client how to expand particular keywords within the file. See the section called “Keyword Substitution”.
svn:eol-style
If present on a file, the value tells the client how to manipulate the file's line-endings in the working copy, and in exported trees. See the section called “End-of-Line Character Sequences” and svn export.
svn:externals
If present on a directory, the value is a multi-line list of other paths and URLs the client should check out. See the section called “Externals Definitions”.
svn:special
If present on a file, indicates that the file is not an ordinary file, but a symbolic link or other special object[60].
svn:needs-lock
If present on a file, tells the client to make the file read-only in the working copy, as a reminder that the file should be locked before editing begins. See the section called “Lock Communication”.
svn:author
If present, contains the authenticated username of the person who created the revision. (If not present, then the revision was committed anonymously.)
svn:date
Contains the UTC time the revision was created, in ISO 8601 format. The value comes from the server machine's clock, not the client's.
svn:log
Contains the log message describing the revision.
svn:autoversioned
If present, the revision was created via the autoversioning feature. See the section called “Autoversioning”.
start-commit — Notification of the beginning of a commit.
The start-commit hook is run before the commit transaction is even created. It is typically used to decide if the user has commit privileges at all.
If the start-commit hook program returns a non-zero exit value, the commit is stopped before the commit transaction is even created, and anything printed to stderr is marshalled back to the client.
pre-commit — Notification just prior to commit completion.
The pre-commit hook is run just before a commit transaction is promoted to a new revision. Typically, this hook is used to protect against commits that are disallowed due to content or location (for example, your site might require that all commits to a certain branch include a ticket number from the bug tracker, or that the incoming log message is non-empty).
If the pre-commit hook program returns a non-zero exit value, the commit is aborted, the commit transaction is removed, and anything printed to stderr is marshalled back to the client.
post-commit — Notification of a successful commit.
The post-commit hook is run after the transaction is committed, and a new revision created. Most people use this hook to send out descriptive emails about the commit or to notify some other tool (such as an issue tracker) that a commit has happened. Some configurations also use this hook to trigger backup processes.
The output from, and exit value returned by the post-commit hook program are ignored.
pre-revprop-change — Notification of a revision property change attempt.
The pre-revprop-change hook is run immediately prior to the modification of a revision property when performed outside the scope of a normal commit. Unlike the other hooks, the default state of this one is to deny the proposed action. The hook must actually exist and return a zero exit value before a revision property modification can happen.
If the pre-revprop-change hook doesn't exist, isn't executable, or returns a non-zero exit value, no change to the property will be made, and anything printed to stderr is marshalled back to the client.
The command-line arguments passed to the hook program, in order, are:
repository path
revision whose property is about to be modified
authenticated username attempting the propchange
name of the property changed
change description: A
(added),
D
(deleted), or M
(modified)
Additionally, Subversion passes to the hook program via standard input the proposed value of the property.
post-revprop-change — Notification of a successful revision property change.
The post-revprop-change hook is run immediately after to the modification of a revision property when performed outside the scope of a normal commit. As can be derived from the description of its counterpart, the pre-revprop-change hook, this hook will not run at all unless the pre-revprop-change hook is implemented. It is typically used to send email notification of the property change.
The output from, and exit value returned by, the post-revprop-change hook program are ignored.
The command-line arguments passed to the hook program, in order, are:
repository path
revision whose property was modified
authenticated username of the person making the change
name of the property changed
change description: A
(added),
D
(deleted), or M
(modified)
Additionally, Subversion passes to the hook program, via standard input, the previous value of the property.
pre-lock — Notification of a path lock attempt.
The pre-lock hook runs whenever someone attempts to lock a path. It can be used to prevent locks altogether, or to create a more complex policy specifying exactly which users are allowed to lock particular paths. If the hook notices a pre-existing lock, then it can also decide whether a user is allowed to “steal” the existing lock.
If the pre-lock hook program returns a non-zero exit value, the lock action is aborted and anything printed to stderr is marshalled back to the client.
post-lock — Notification of a successful path lock.
The post-lock hook runs after one or more paths has been locked. It is typically used to send email notification of the lock event.
The output from and exit value returned by the post-lock hook program are ignored.
pre-unlock — Notification of a path unlock attempt.
The pre-unlock hook runs whenever someone attempts to remove a lock on a file. It can be used to create policies that specify which users are allowed to unlock particular paths. It's particularly important for determining policies about lock breakage. If user A locks a file, is user B allowed to break the lock? What if the lock is more than a week old? These sorts of things can be decided and enforced by the hook.
If the pre-unlock hook program returns a non-zero exit value, the unlock action is aborted and anything printed to stderr is marshalled back to the client.
post-unlock — Notification of a successful path unlock.
The post-unlock hook runs after one or more paths has been unlocked. It is typically used to send email notification of the unlock event.
The output from and exit value returned by, the post-unlock hook program are ignored.
[58] Yes, yes, you don't need a subcommand to use the
--version
option, but we'll get to that in just
a minute.
[59] Remember, svnadmin works only with local paths, not URLs.
[60] As of this writing, symbolic links are indeed the only “special” objects. But there might be more in future releases of Subversion.
Table of Contents
If you're eager to get Subversion up and running (and you enjoy learning by experimentation), this chapter will show you how to create a repository, import code, and then check it back out again as a working copy. Along the way, we give links to the relevant chapters of this book.
If you're new to the entire concept of version control or to the “copy-modify-merge” model used by both CVS and Subversion, then you should read Chapter 1, Fundamental Concepts before going any further.
Subversion is built on a portability layer called APR—the Apache Portable Runtime library. The APR library provides all the interfaces that Subversion needs to function on different operating systems: disk access, network access, memory management, and so on. While Subversion is able to use Apache as one of its network server programs, its dependence on APR does not mean that Apache is a required component. APR is a standalone library useable by any application. It does mean, however, that like Apache, Subversion clients and servers run on any operating system that the Apache httpd server runs on: Windows, Linux, all flavors of BSD, Mac OS X, Netware, and others.
The easiest way to get Subversion is to download a binary package built for your operating system. Subversion's website (http://subversion.tigris.org) often has these packages available for download, posted by volunteers. The site usually contains graphical installer packages for users of Microsoft operating systems. If you run a Unix-like operating system, you can use your system's native package distribution system (RPMs, DEBs, the ports tree, etc.) to get Subversion.
Alternately, you can build Subversion directly from source
code, though it's not always an easy task. (If you're not
experienced at building open source software packages, you're
probably better off downloading a binary distribution instead!)
From the Subversion website, download the latest source-code
release. After unpacking it, follow the instructions in
the INSTALL
file to build it. Note that a
released source package may not contain everything you need to
build a command-line client capable of talking to a remote
repository. Starting with Subversion 1.4 and later, the
libraries Subversion depends on (apr, apr-util, and neon) are
distributed in a separate source package suffixed
with -deps
. These libraries are now common
enough that they may already be installed on your system. If
not, you'll need to unpack the dependency package into the same
directory where you unpacked the main Subversion source.
Regardless, it's possible that you may want to fetch other
optional dependencies such as Berkeley DB and possibly Apache
httpd. If you want to do a complete build, make sure you have
all of the packages documented in
the INSTALL
file.
If you're one of those folks that likes to use bleeding-edge software, you can also get the Subversion source code from the Subversion repository in which it lives. Obviously, you'll need to already have a Subversion client on hand to do this. But once you do, you can check out a working copy of the Subversion source repository from http://svn.collab.net/repos/svn/trunk/: [61]
$ svn checkout http://svn.collab.net/repos/svn/trunk subversion A subversion/HACKING A subversion/INSTALL A subversion/README A subversion/autogen.sh A subversion/build.conf …
The above command will create a working copy of the latest
(unreleased) Subversion source code into a subdirectory
named subversion
in your current working
directory. You can adjust that last argument as you see fit.
Regardless of what you call the new working copy directory,
though, after this operation completes, you will now have the
Subversion source code. Of course, you will still need to fetch
a few helper libraries (apr, apr-util, etc.)—see
the INSTALL
file in the top level of the
working copy for details.
“Please make sure your seat backs are in their full, upright position, and that your tray tables are stored. Flight attendants, prepare for take-off….”
What follows is a quick tutorial that walks you through some basic Subversion configuration and operation. When you finish it, you should have a basic understanding of Subversion's typical usage.
The examples used in this appendix assume that you have svn, the Subversion command-line client, and svnadmin, the administrative tool, ready to go on a Unix-like operating system. (This tutorial also works at the Windows commandline prompt, assuming you make some obvious tweaks.) We also assume you are using Subversion 1.2 or later (run svn --version to check.)
Subversion stores all versioned data in a central repository. To begin, create a new repository:
$ svnadmin create /path/to/repos $ ls /path/to/repos conf/ dav/ db/ format hooks/ locks/ README.txt
This command creates a new directory
/path/to/repos
which contains a Subversion
repository. This new directory contains (among other things) a
collection of database files. You won't see your versioned
files if you peek inside. For more information about repository
creation and maintenance, see
Chapter 5, Repository Administration.
Subversion has no concept of a “project”. The repository is just a virtual versioned filesystem, a large tree that can hold anything you wish. Some administrators prefer to store only one project in a repository, and others prefer to store multiple projects in a repository by placing them into separate directories. The merits of each approach are discussed in the section called “Planning Your Repository Organization”. Either way, the repository only manages files and directories, so it's up to humans to interpret particular directories as “projects”. So while you might see references to projects throughout this book, keep in mind that we're only ever talking about some directory (or collection of directories) in the repository.
In this example, we assume that you already have some sort
of project (a collection of files and directories) that you wish
to import into your newly created Subversion repository. Begin
by organizing your data into a single directory
called myproject
(or whatever you wish).
For reasons that will be clear later (see
Chapter 4, Branching and Merging), your project's tree
structure should contain three top-level directories
named branches
,
tags
, and
trunk
. The trunk
directory should contain all of your data,
while branches
and tags
directories are empty:
/tmp/myproject/branches/ /tmp/myproject/tags/ /tmp/myproject/trunk/ foo.c bar.c Makefile …
The branches
, tags
,
and trunk
subdirectories aren't actually
required by Subversion. They're merely a popular convention
that you'll most likely want to use later on.
Once you have your tree of data ready to go, import it into the repository with the svn import command (see the section called “Getting Data into your Repository”):
$ svn import /tmp/myproject file:///path/to/repos/myproject -m "initial import" Adding /tmp/myproject/branches Adding /tmp/myproject/tags Adding /tmp/myproject/trunk Adding /tmp/myproject/trunk/foo.c Adding /tmp/myproject/trunk/bar.c Adding /tmp/myproject/trunk/Makefile … Committed revision 1. $
Now the repository contains this tree of data. As mentioned
earlier, you won't see your files by directly peeking into the
repository; they're all stored within a database. But the
repository's imaginary filesystem now contains a top-level
directory named myproject
, which in turn
contains your data.
Note that the original /tmp/myproject
directory is unchanged; Subversion is unaware of it. (In fact,
you can even delete that directory if you wish.) In order to
start manipulating repository data, you need to create a new
“working copy” of the data, a sort of private
workspace. Ask Subversion to “check out” a working
copy of the myproject/trunk
directory in
the repository:
$ svn checkout file:///path/to/repos/myproject/trunk myproject A myproject/foo.c A myproject/bar.c A myproject/Makefile … Checked out revision 1.
Now you have a personal copy of part of the repository in a
new directory named myproject
. You can edit
the files in your working copy and then commit those changes
back into the repository.
Enter your working copy and edit a file's contents.
Run svn diff to see unified diff output of your changes.
Run svn commit to commit the new version of your file to the repository.
Run svn update to bring your working copy “up-to-date” with the repository.
For a full tour of all the things you can do with your working copy, read Chapter 2, Basic Usage.
At this point, you have the option of making your repository available to others over a network. See Chapter 6, Server Configuration to learn about the different sorts of server processes available and how to configure them.
[61] Note that the URL checked out in the example above
ends not with svn
, but with a
subdirectory thereof called trunk
. See
our discussion of Subversion's branching and tagging model
for the reasoning behind this.
Table of Contents
This appendix is a guide for CVS users new to Subversion. It's essentially a list of differences between the two systems as “viewed from 10,000 feet”. For each section, we provide backreferences to relevant chapters when possible.
Although the goal of Subversion is to take over the current and future CVS user base, some new features and design changes were required to fix certain “broken” behaviors that CVS had. This means that, as a CVS user, you may need to break habits—ones that you forgot were odd to begin with.
In CVS, revision numbers are per-file. This is because CVS stores its data in RCS files; each file has a corresponding RCS file in the repository, and the repository is roughly laid out according to the structure of your project tree.
In Subversion, the repository looks like a single filesystem. Each commit results in an entirely new filesystem tree; in essence, the repository is an array of trees. Each of these trees is labeled with a single revision number. When someone talks about “revision 54”, they're talking about a particular tree (and indirectly, the way the filesystem looked after the 54th commit).
Technically, it's not valid to talk about “revision 5
of foo.c
”. Instead, one would say
“foo.c
as it appears in revision
5”. Also, be careful when making assumptions about the
evolution of a file. In CVS, revisions 5 and 6 of
foo.c
are always different. In Subversion,
it's most likely that foo.c
did
not change between revisions 5 and
6.
Similarly, in CVS a tag or branch is an annotation on the
file, or on the version information for that individual file,
whereas in Subversion a tag or branch is a copy of an entire
tree (by convention, into the /branches
or /tags
directories that appear at the top
level of the repository, beside /trunk
). In
the repository as a whole, many versions of each file may be
visible: the latest version on each branch, every tagged
version, and of course the latest version on the trunk
itself. So, to refine the terms even further, one would often
say “foo.c
as it appears in
/branches/REL1
in revision
5.”
For more details on this topic, see the section called “Revisions”.
Subversion tracks tree structures, not just file contents. It's one of the biggest reasons Subversion was written to replace CVS.
Here's what this means to you, as a former CVS user:
The svn add and svn delete commands work on directories now, just as they work on files. So do svn copy and svn move. However, these commands do not cause any kind of immediate change in the repository. Instead, the working items are simply “scheduled” for addition or deletion. No repository changes happen until you run svn commit.
Directories aren't dumb containers anymore; they have
revision numbers like files. (Or more properly, it's
correct to talk about “directory
foo/
in revision 5”.)
Let's talk more about that last point. Directory versioning is a hard problem; because we want to allow mixed-revision working copies, there are some limitations on how far we can abuse this model.
From a theoretical point of view, we define “revision
5 of directory foo
” to mean a
specific collection of directory-entries and properties. Now
suppose we start adding and removing files from
foo
, and then commit. It would be a lie
to say that we still have revision 5 of
foo
. However, if we bumped
foo
's revision number after the commit,
that would be a lie too; there may be other changes to
foo
we haven't yet received, because we
haven't updated yet.
Subversion deals with this problem by quietly tracking
committed adds and deletes in the .svn
area. When you eventually run svn update,
all accounts are settled with the repository, and the
directory's new revision number is set correctly.
Therefore, only after an update is it truly safe to
say that you have a “perfect” revision of a
directory. Most of the time, your working copy will
contain “imperfect” directory revisions.
Similarly, a problem arises if you attempt to commit property changes on a directory. Normally, the commit would bump the working directory's local revision number. But again, that would be a lie, because there may be adds or deletes that the directory doesn't yet have, because no update has happened. Therefore, you are not allowed to commit property-changes on a directory unless the directory is up-to-date.
For more discussion about the limitations of directory versioning, see the section called “Mixed Revision Working Copies”.
In recent years, disk space has become outrageously cheap and abundant, but network bandwidth has not. Therefore, the Subversion working copy has been optimized around the scarcer resource.
The .svn
administrative directory
serves the same purpose as the CVS
directory, except that it also stores read-only,
“pristine” copies of your files. This allows you
to do many things off-line:
Shows you any local changes you've made (see the section called “See an overview of your changes”)
Shows you the details of your changes (see the section called “Examine the details of your local modifications”)
Removes your local changes (see the section called “Undoing Working Changes”)
Also, the cached pristine files allow the Subversion client to send differences when committing, which CVS cannot do.
The last subcommand in the list is new; it will not only remove local changes, but it will un-schedule operations such as adds and deletes. It's the preferred way to revert a file; running rm file; svn update will still work, but it blurs the purpose of updating. And, while we're on this subject…
In Subversion, we've tried to erase a lot of the confusion between the cvs status and cvs update commands.
The cvs status command has two purposes:
first, to show the user any local modifications in the working
copy, and second, to show the user which files are out-of-date.
Unfortunately, because of CVS's hard-to-read status output, many
CVS users don't take advantage of this command at all. Instead,
they've developed a habit of running cvs
update or cvs -n update to quickly
see their changes. If users forget to use
the -n
option, this has the side effect of
merging repository changes they may not be ready to deal
with.
With Subversion, we've tried to remove this muddle by making the output of svn status easy to read for both humans and parsers. Also, svn update only prints information about files that are updated, not local modifications.
svn status prints all files that have local modifications. By default, the repository is not contacted. While this subcommand accepts a fair number of options, the following are the most commonly used ones:
-u
Contact the repository to determine, and then display, out-of-dateness information.
-v
Show all entries under version control.
-N
Run non-recursively (do not descend into subdirectories).
The status command has two output formats. In the default “short” format, local modifications look like this:
$ svn status M foo.c M bar/baz.c
If you specify the --show-updates
(-u
) option, a longer output format is
used:
$ svn status -u M 1047 foo.c * 1045 faces.html * bloo.png M 1050 bar/baz.c Status against revision: 1066
In this case, two new columns appear. The second column
contains an asterisk if the file or directory is out-of-date.
The third column shows the working-copy's revision number of the
item. In the example above, the asterisk indicates that
faces.html
would be patched if we updated,
and that bloo.png
is a newly added file in
the repository. (The absence of any revision number next to
bloo.png
means that it doesn't yet exist in
the working copy.)
At this point, you should take a quick look at the list of all possible status codes in svn status. Here are a few of the more common status codes you'll see:
A Resource is scheduled for Addition D Resource is scheduled for Deletion M Resource has local Modifications C Resource has Conflicts (changes have not been completely merged between the repository and working copy version) X Resource is eXternal to this working copy (may come from another repository). See the section called “Externals Definitions” ? Resource is not under version control ! Resource is missing or incomplete (removed by another tool than Subversion)
For a more detailed discussion of svn status, see the section called “See an overview of your changes”.
svn update updates your working copy, and only prints information about files that it updates.
Subversion has combined the CVS P
and
U
codes into just U
. When
a merge or conflict occurs, Subversion simply prints
G
or C
, rather than a
whole sentence about it.
For a more detailed discussion of svn update, see the section called “Update Your Working Copy”.
Subversion doesn't distinguish between filesystem space and “branch” space; branches and tags are ordinary directories within the filesystem. This is probably the single biggest mental hurdle a CVS user will need to climb. Read all about it in Chapter 4, Branching and Merging.
Since Subversion treats branches and tags as ordinary
directories, always remember to check out the
trunk
(http://svn.example.com/repos/calc/trunk/
)
of your project, and not the project itself
(http://svn.example.com/repos/calc/
). If
you make the mistake of checking out the project itself,
you'll wind up with a working copy that contains a copy of
your project for every branch and tag you
have.[62]
A new feature of Subversion is that you can attach arbitrary metadata (or “properties”) to files and directories. Properties are arbitrary name/value pairs associated with files and directories in your working copy.
To set or get a property name, use the svn propset and svn propget subcommands. To list all properties on an object, use svn proplist.
For more information, see the section called “Properties”.
CVS marks conflicts with in-line “conflict
markers”, and prints a C
during an
update. Historically, this has caused problems, because CVS
isn't doing enough. Many users forget about (or don't see) the
C
after it whizzes by on their terminal.
They often forget that the conflict-markers are even present,
and then accidentally commit files containing
conflict-markers.
Subversion solves this problem by making conflicts more tangible. It remembers that a file is in a state of conflict, and won't allow you to commit your changes until you run svn resolved. See the section called “Resolve Conflicts (Merging Others' Changes)” for more details.
In the most general sense, Subversion handles binary files more gracefully than CVS does. Because CVS uses RCS, it can only store successive full copies of a changing binary file. Subversion, however, expresses differences between files using a binary-differencing algorithm, regardless of whether they contain textual or binary data. That means that all files are stored differentially (compressed) in the repository.
CVS users have to mark binary files with
-kb
flags, to prevent data from being garbled
(due to keyword expansion and line-ending translations). They
sometimes forget to do this.
Subversion takes the more paranoid route—first, it never performs any kind of keyword or line-ending translation unless you explicitly ask it do so (see the section called “Keyword Substitution” and the section called “End-of-Line Character Sequences” for more details). By default, Subversion treats all file data as literal byte strings, and files are always stored in the repository in an untranslated state.
Second, Subversion maintains an internal notion of whether a file is “text” or “binary” data, but this notion is only extant in the working copy. During an svn update, Subversion will perform contextual merges on locally modified text files, but will not attempt to do so for binary files.
To determine whether a contextual merge is possible,
Subversion examines the svn:mime-type
property. If the file has no svn:mime-type
property, or has a mime-type that is textual (e.g.
text/*
),
Subversion assumes it is text. Otherwise, Subversion assumes
the file is binary. Subversion also helps users by running a
binary-detection algorithm in the svn import
and svn add commands. These commands will
make a good guess and then (possibly) set a binary
svn:mime-type
property on the file being
added. (If Subversion guesses wrong, the user can always remove
or hand-edit the property.)
Unlike CVS, a Subversion working copy is aware that it has checked out a module. That means that if somebody changes the definition of a module (e.g. adds or removes components), then a call to svn update will update the working copy appropriately, adding and removing components.
Subversion defines modules as a list of directories within a directory property: see the section called “Externals Definitions”.
With CVS's pserver, you are required to “login” to the server before any read or write operation—you sometimes even have to login for anonymous operations. With a Subversion repository using Apache httpd or svnserve as the server, you don't provide any authentication credentials at the outset—if an operation that you perform requires authentication, the server will challenge you for your credentials (whether those credentials are username and password, a client certificate, or even both). So if your repository is world-readable, you will not be required to authenticate at all for read operations.
As with CVS, Subversion still caches your credentials on
disk (in your ~/.subversion/auth/
directory) unless you tell it not to by using the
--no-auth-cache
option.
The exception to this behavior, however, is in the case of
accessing an svnserve server over an SSH
tunnel, using the svn+ssh://
URL scheme. In
that case, the ssh program unconditionally
demands authentication just to start the tunnel.
Perhaps the most important way to familiarize CVS users with Subversion is to let them continue to work on their projects using the new system. And while that can be somewhat accomplished using a flat import into a Subversion repository of an exported CVS repository, the more thorough solution involves transferring not just the latest snapshot of their data, but all the history behind it as well, from one system to another. This is an extremely difficult problem to solve that involves deducing changesets in the absence of atomicity, and translating between the systems' completely orthogonal branching policies, among other complications. Still, there are a handful of tools claiming to at least partially support the ability to convert existing CVS repositories into Subversion ones.
The most popular (and likely the most mature) conversion tool is cvs2svn (http://cvs2svn.tigris.org/), a Python script originally created by members of Subversion's own development community. This tool is meant to run exactly once: it scans your CVS repository multiple times and attempts to deduce commits, branches, and tags as best it can. When it finishes, the result is a either a Subversion repository or a portable Subversion dumpfile representing your code's history. See the website for detailed instructions and caveats.
Table of Contents
WebDAV is an extension to HTTP, and is growing more and more popular as a standard for file-sharing. Today's operating systems are becoming extremely Web-aware, and many now have built-in support for mounting “shares” exported by WebDAV servers.
If you use Apache as your Subversion network server, then to some extent you are also running a WebDAV server. This appendix gives some background on the nature of this protocol, how Subversion uses it, and how well Subversion interoperates with other software that is WebDAV-aware.
DAV stands for “Distributed Authoring and Versioning”. RFC 2518 defines a set of concepts and accompanying extension methods to HTTP 1.1 that make the web into a more universal read/write medium. The basic idea is that a WebDAV-compliant web server can act like a generic file server; clients can “mount” shared folders over HTTP that behave much like other network filesystems (such as NFS or SMB.)
The tragedy, though, is that despite the acronym, the RFC specification doesn't actually describe any sort of version control. Basic WebDAV clients and servers assume only one version of each file or directory exists, and can be repeatedly overwritten.
Because RFC 2518 left out versioning concepts, another committee was left with the responsibility of writing RFC 3253 a few years later. The new RFC adds versioning concepts to WebDAV, placing the “V” back in “DAV” — hence the term “DeltaV”. WebDAV/DeltaV clients and servers are often called just “DeltaV” programs, since DeltaV implies the existence of basic WebDAV.
The original WebDAV standard has been widely successful. Every modern computer operating system has a general WebDAV client built-in (details to follow), and a number of popular standalone applications are also able to speak WebDAV— Microsoft Office, Dreamweaver, and Photoshop to name a few. On the server end, the Apache webserver has been able to provide WebDAV services since 1998 and is considered the de-facto open-source standard. There are several other commercial WebDAV servers available, including Microsoft's own IIS.
DeltaV, unfortunately, has not been so successful. It's very difficult to find any DeltaV clients or servers. The few that do exist are relatively unknown commercial products, and thus it's very difficult to test interoperability. It's not entirely clear as to why DeltaV has remained stagnant. Some argue that the specification is just too complex, others argue that while WebDAV's features have mass appeal (even the least technical users appreciate network file-sharing), version control features aren't interesting or necessary for most users. Finally, some have argued that DeltaV remains unpopular because there's still no open-source server product which implements it well.
When Subversion was still in its design phase, it seemed like a great idea to use Apache as a network server. It already had a module to provide WebDAV services. DeltaV was a relatively new specification. The hope was that the Subversion server module (mod_dav_svn) would eventually evolve into an open-source DeltaV reference implementation. Unfortunately, DeltaV has a very specific versioning model that doesn't quite line up with Subversion's model. Some concepts were mappable, others were not.
What does this mean, then?
First, the Subversion client is not a fully-implemented
DeltaV client. It needs certain types of things from the server
that DeltaV itself cannot provide, and thus is largely dependent
on a number of Subversion-specific
HTTP REPORT
requests that
only mod_dav_svn understands.
Second, mod_dav_svn is not a fully-realized DeltaV server. Many portions of the DeltaV specification were irrelevant to Subversion, and thus left unimplemented.
There is still some debate in the developer community as to whether or not it's worthwhile to remedy either of these situations. It's fairly unrealistic to change Subversion's design to match DeltaV, so there's probably no way the client can ever learn to get everything it needs from a general DeltaV server. On the other hand, mod_dav_svn could be further developed to implement all of DeltaV, but it's hard to find motivation to do so—there are almost no DeltaV clients to interoperate with.
While the Subversion client is not a full DeltaV client, nor the Subversion server a full DeltaV server, there's still a glimmer of WebDAV interoperability to be happy about: it's called autoversioning.
Autoversioning is an optional feature defined in the DeltaV
standard. A typical DeltaV server will reject an ignorant
WebDAV client attempting to do a PUT
to a
file that's under version control. To change a
version-controlled file, the server expects a series of proper
versioning requests: something like
MKACTIVITY
, CHECKOUT
,
PUT
, CHECKIN
. But if the
DeltaV server supports autoversioning, then write-requests from
basic WebDAV clients are accepted. The server behaves as if the
client had issued the proper series of
versioning requests, performing a commit under the hood. In
other words, it allows a DeltaV server to interoperate with
ordinary WebDAV clients that don't understand versioning.
Because so many operating systems already have integrated WebDAV clients, the use case for this feature can be incredibly appealing to administrators working with non-technical users: imagine an office of ordinary users running Microsoft Windows or Mac OS. Each user “mounts” the Subversion repository, which appears to be an ordinary network folder. They use the shared folder as they always do: open files, edit them, save them. Meanwhile, the server is automatically versioning everything. Any administrator (or knowledgeable user) can still use a Subversion client to search history and retrieve older versions of data.
This scenario isn't fiction: it's real and it works, as of
Subversion 1.2 and later. To activate autoversioning in
mod_dav_svn, use
the SVNAutoversioning
directive within
the httpd.conf
Location block, like
so:
<Location /repos> DAV svn SVNPath /path/to/repository SVNAutoversioning on </Location>
When SVNAutoversioning is active, write requests from WebDAV clients result in automatic commits. A generic log message is auto-generated and attached to each revision.
Before activating this feature, however, understand what
you're getting into. WebDAV clients tend to do
many write requests, resulting in a huge
number of automatically committed revisions. For example, when
saving data, many clients will do a PUT
of a
0-byte file (as a way of reserving a name) followed by another
PUT
with the real file data. The single
file-write results in two separate commits. Also consider that
many applications auto-save every few minutes, resulting in even
more commits.
If you have a post-commit hook program that sends email, you
may want to disable email generation either altogether, or on
certain sections of the repository; it depends on whether you
think the influx of emails will still prove to be valuable
notifications or not. Also, a smart post-commit hook program
can distinguish between a transaction created via autoversioning
and one created through a normal svn commit.
The trick is to look for a revision property
named svn:autoversioned
. If present, the
commit was made by a generic WebDAV client.
Another feature that may be a useful complement
for SVNAutoversioning
comes from
Apache's mod_mime
module. If a WebDAV client
adds a new file to the repository, there's no opportunity for
the user to set the the svn:mime-type
property. This might cause the file to appear as generic icon
when viewed within a WebDAV shared folder, not having an
association with any application. One remedy is to have a
sysadmin (or other Subversion-knowledgeable person) check out a
working copy and manually set
the svn:mime-type
property on necessary
files. But there's potentially no end to such cleanup tasks.
Instead, you can use the ModMimeUsePathInfo
directive in your Subversion <Location>
block:
<Location /repos> DAV svn SVNPath /path/to/repository SVNAutoversioning on ModMimeUsePathInfo on </Location>
This directive allows mod_mime
to attempt
automatic deduction of the mime-type on new files that enter the
repository via autoversioning. The module looks at the file's
named extension and possibly the contents as well; if the file
matches some common patterns, then the the
file's svn:mime-type
property will be set
automatically.
All WebDAV clients fall into one of three categories—standalone applications, file-explorer extensions, or filesystem implementations. These categories broadly define the types of WebDAV functionality available to users. Table C.1, “Common WebDAV Clients” gives our categorization and a quick description of some common pieces of WebDAV-enabled software. More details about these software offerings, as well as their general category, can be found in the sections that follow.
Table C.1. Common WebDAV Clients
Software | Type | Windows | Mac | Linux | Description |
---|---|---|---|---|---|
Adobe Photoshop | Standalone WebDAV application | X | Image editing software, allowing direct opening from, and writing to, WebDAV URLs | ||
Cadaver | Standalone WebDAV application | X | X | Command-line WebDAV client supporting file transfer, tree, and locking operations | |
DAV Explorer | Standalone WebDAV application | X | X | X | Java GUI tool for exploring WebDAV shares |
Macromedia Dreamweaver | Standalone WebDAV application | X | Web production software able to directly read from and write to WebDAV URLs | ||
Microsoft Office | Standalone WebDAV application | X | Office productivity suite with several components able to directly read from and write to WebDAV URLs | ||
Microsoft Web Folders | File-explorer WebDAV extension | X | GUI file explorer program able to perform tree operations on a WebDAV share | ||
GNOME Nautilus | File-explorer WebDAV extension | X | GUI file explorer able to perform tree operations on a WebDAV share | ||
KDE Konqueror | File-explorer WebDAV extension | X | GUI file explorer able to perform tree operations on a WebDAV share | ||
Mac OS X | WebDAV filesystem implementation | X | Operating system has built-in support for mounting WebDAV shares. | ||
Novell NetDrive | WebDAV filesystem implementation | X | Drive-mapping program for assigning Windows drive letters to a mounted remote WebDAV share | ||
SRT WebDrive | WebDAV filesystem implementation | X | File transfer software which, among other things, allows the assignment of Windows drive letters to a mounted remote WebDAV share | ||
davfs2 | WebDAV filesystem implementation | X | Linux file system driver that allows you to mount a WebDAV share |
A WebDAV application is a program which speakes WebDAV protocols with a WebDAV server. We'll cover some of the most popular programs with this kind of WebDAV support.
On Windows, there are several well-known applications that contain integrated WebDAV client functionality, such as Microsoft's Office, [63] Adobe's Photoshop, and Macromedia's Dreamweaver programs. They're able to directly open and save to URLs, and tend to make heavy use of WebDAV locks when editing a file.
Note that while many of these programs also exist for the Mac OS X, they do not appear to support WebDAV directly on that platform. In fact, on Mac OS X, the
dialog box doesn't allow one to type a path or URL at all. It's likely that the WebDAV features were deliberately left out of Macintosh versions of these programs, since OS X already provides such excellent low-level filesystem support for WebDAV.Cadaver is a bare-bones Unix commandline program for browsing and changing WebDAV shares. Like the Subversion client, it uses the neon HTTP library—not surprisingly, since both neon and cadaver are written by the same author. Cadaver is free software (GPL license) and is available at http://www.webdav.org/cadaver/.
Using cadaver is similar to using a commandline FTP program, and thus it's extremely useful for basic WebDAV debugging. It can be used to upload or download files in a pinch, and also to examine properties, and to copy, move, lock or unlock files:
$ cadaver http://host/repos dav:/repos/> ls Listing collection `/repos/': succeeded. Coll: > foobar 0 May 10 16:19 > playwright.el 2864 May 4 16:18 > proofbypoem.txt 1461 May 5 15:09 > westcoast.jpg 66737 May 5 15:09 dav:/repos/> put README Uploading README to `/repos/README': Progress: [=============================>] 100.0% of 357 bytes succeeded. dav:/repos/> get proofbypoem.txt Downloading `/repos/proofbypoem.txt' to proofbypoem.txt: Progress: [=============================>] 100.0% of 1461 bytes succeeded.
DAV Explorer is another standalone WebDAV client, written in Java. It's under a free Apache-like license and is available at http://www.ics.uci.edu/~webdav/. DAV Explorer does everything cadaver does, but has the advantages of being portable and being a more user-friendly GUI application. It's also one of the first clients to support the new WebDAV Access Control Protocol (RFC 3744).
Of course, DAV Explorer's ACL support is useless in this
case, since mod_dav_svn doesn't support
it. The fact that both Cadaver and DAV Explorer support
some limited DeltaV commands isn't particularly useful
either, since they don't allow MKACTIVITY
requests. But it's not relevant anyway; we're assuming all
of these clients are operating against an autoversioning
repository.
Some popular file explorer GUI programs support WebDAV extensions which allow a user to browse a DAV share as if it was just another directory on the local computer, and to perform basic tree editing operations on the items in that share. For example, Windows Explorer is able to browse a WebDAV server as a “network place”. Users can drag files to and from the desktop, or can rename, copy, or delete files in the usual way. But because it's only a feature of the file-explorer, the DAV share isn't visible to ordinary applications. All DAV interaction must happen through the explorer interface.
Microsoft was one of the original backers of the WebDAV specification, and first started shipping a client in Windows 98, known as “Web Folders”. This client was also shipped in Windows NT4 and 2000.
The original Web Folders client was an extension to Explorer, the main GUI program used to browse filesystems. It works well enough. In Windows 98, the feature might need to be explicitly installed if Web Folders aren't already visible inside “My Computer”. In Windows 2000, simply add a new “network place”, enter the URL, and the WebDAV share will pop up for browsing.
With the release of Windows XP, Microsoft started shipping
a new implementation of Web Folders, known as the “WebDAV
mini-redirector”. The new implementation is a
filesystem-level client, allowing WebDAV shares to be mounted
as drive letters. Unfortunately, this implementation is
incredibly buggy. The client usually tries to convert http
URLs (http://host/repos
) into UNC share
notation (\\host\repos
); it also often
tries to use Windows Domain authentication to respond to
basic-auth HTTP challenges, sending usernames as
HOST\username
. These interoperability
problems are severe and documented in numerous places around
the web, to the frustration of many users. Even Greg Stein,
the original author of Apache's WebDAV module, recommends
against trying to use XP Web Folders against an Apache
server.
It turns out that the original “Explorer-only” Web Folders implementation isn't dead in XP, it's just buried. It's still possible to find it by using this technique:
Go to 'Network Places'.
Add a new network place.
When prompted, enter the URL of the repository, but
include a port number in the URL.
For example, http://host/repos
would be
entered as http://host:80/repos
instead.
Respond to any authentication prompts.
There are a number of other rumored workarounds to the problems, but none of them seem to work on all versions and patchlevels of Windows XP. In our tests, only the previous algorithm seems to work consistently on every system. The general consensus of the WebDAV community is that you should avoid the new Web Folders implementation and use the old one instead, and that if you need a real filesystem-level client for Windows XP, then use a third-party program like WebDrive or NetDrive.
A final tip: if you're attempting to use XP Web Folders, make sure you have the absolute latest version from Microsoft. For example, Microsoft released a bug-fixed version in January 2005, available at http://support.microsoft.com/?kbid=892211. In particular, this release is known to fix a bug whereby browsing a DAV share shows an unexpected infinite recursion.
Nautilus is the official file manager/browser for the GNOME desktop (http://www.gnome.org), and Konqueror is the manager/browser for the KDE desktop (http://www.kde.org). Both of these applications have an explorer-level WebDAV client built-in, and operate just fine against an autoversioning repository.
In GNOME's Nautilus, from the
, select and enter the URL. The repository should then be displayed like any other filesystem.In KDE's Konqueror, you need to use the
webdav://
scheme when entering the URL in
the location bar. If you enter
an http://
URL, Konqueror will behave
like an ordinary web browser. You'll likely see the generic
HTML directory listing produced
by mod_dav_svn. By entering
webdav://host/repos
instead of
http://host/repos
, Konqueror becomes a
WebDAV client and displays the repository as a
filesystem.
The WebDAV filesystem implementation is arguably the best sort of WebDAV client. It's implemented as a low-level filesystem module, typically within the operating system's kernel. This means that the DAV share is mounted like any other network filesystem, similar to mounting an NFS share on Unix, or attaching an SMB share as drive letter in Windows. As a result, this sort of client provides completely transparent read/write WebDAV access to all programs. Applications aren't even aware that WebDAV requests are happening.
Both WebDrive and NetDrive are excellent commercial products which allow a WebDAV share to be attached as drive letters in Windows. We've had nothing but success with these products. At the time of writing, WebDrive can be purchased from South River Technologies (http://www.southrivertech.com). NetDrive ships with Netware, is free of charge, and can be found by searching the web for “netdrive.exe”. Though it is freely available online, users are required to have a Netware license. (If any of that sounds odd to you, you're not alone. See this page on Novell's website: http://www.novell.com/coolsolutions/qna/999.html)
Apple's OS X operating system has an integrated
filesystem-level WebDAV client. From the Finder, select the
webdav
filesystem type with the mount command:
$ mount -t webdav http://svn.example.com/repos/project /some/mountpoint $
Note that if your mod_dav_svn is older than version 1.2, OS X will refuse to mount the share as read-write; it will appear as read-only. This is because OS X insists on locking support for read-write shares, and the ability to lock files first appeared in Subversion 1.2.
One more word of warning: OS X's WebDAV client can
sometimes be overly sensitive to HTTP redirects. If OS X is
unable to mount the repository at all, you may need to enable
the BrowserMatch directive in the Apache server's
httpd.conf
:
BrowserMatch "^WebDAVFS/1.[012]" redirect-carefully
Linux davfs2 is a filesystem module for the Linux kernel, whose development is located at http://dav.sourceforge.net/. Once installed, a WebDAV network share can be mounted with the usual Linux mount command:
$ mount.davfs http://host/repos /mnt/dav
[63] WebDAV support was removed from Microsoft Access for some reason, but exists in the rest of the Office suite.
Subversion's modular design (covered in the section called “Layered Library Design”) and the availability of language bindings (as described in the section called “Using Languages Other than C and C++”) make it a likely candidate for use as an extension or backend to other pieces of software. For a listing of many third-party tools that are using Subversion functionality under-the-hood, check out the Links page on the Subversion website (http://subversion.tigris.org/project_links.html).
Copyright (c) 2002-2007 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato. This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. A summary of the license is given below, followed by the full legal text. -------------------------------------------------------------------- You are free: * to copy, distribute, display, and perform the work * to make derivative works * to make commercial use of the work Under the following conditions: Attribution. You must give the original author credit. * For any reuse or distribution, you must make clear to others the license terms of this work. * Any of these conditions can be waived if you get permission from the author. Your fair use and other rights are in no way affected by the above. The above is a summary of the full license below. ==================================================================== Creative Commons Legal Code Attribution 2.0 CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE. License THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS. 1. Definitions a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the purposes of this License. b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this License. c. "Licensor" means the individual or entity that offers the Work under the terms of this License. d. "Original Author" means the individual or entity who created the Work. e. "Work" means the copyrightable work of authorship offered under the terms of this License. f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation. 2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws. 3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below: a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the Collective Works; b. to create and reproduce Derivative Works; c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission the Work including as incorporated in Collective Works; d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission Derivative Works. e. For the avoidance of doubt, where the work is a musical composition: i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g. webcast) of the Work. ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions). f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor waives the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other jurisdictions). The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. All rights not expressly granted by Licensor are hereby reserved. 4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following restrictions: a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work any reference to such Licensor or the Original Author, as requested. If You create a Derivative Work, upon notice from any Licensor You must, to the extent practicable, remove from the Derivative Work any reference to such Licensor or the Original Author, as requested. b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative Works or Collective Works, You must keep intact all copyright notices for the Work and give the Original Author credit reasonable to the medium or means You are utilizing by conveying the name (or pseudonym if applicable) of the Original Author if supplied; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and in the case of a Derivative Work, a credit identifying the use of the Work in the Derivative Work (e.g., "French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). Such credit may be implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or Collective Work, at a minimum such credit will appear where any other comparable authorship credit appears and in a manner at least as prominent as such other comparable authorship credit. 5. Representations, Warranties and Disclaimer UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU. 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 7. Termination a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Derivative Works or Collective Works from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License. b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above. 8. Miscellaneous a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License. b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License. c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable. d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent. e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You. Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages whatsoever, including without limitation any general, special, incidental or consequential damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor. Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, neither party will use the trademark "Creative Commons" or any related trademark or logo of Creative Commons without the prior written consent of Creative Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark usage guidelines, as may be published on its website or otherwise made available upon request from time to time. Creative Commons may be contacted at http://creativecommons.org/. ====================================================================